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Abstract

Human motion generation has become an important research direction 
in computer vision and human motion modelling. Current motion generation 
methods typically rely on static or random masking during training, which fail to 
adequately capture dynamic variations in joint movement amplitude and temporal 
characteristics, resulting in suboptimal accuracy in generated motions. To address 
this, we propose a dynamic masking strategy (DMS) based on motion amplitude, 
which dynamically adjusts the mask probability distribution by incorporating both 
motion amplitude and temporal features. By calculating the motion amplitude 
of each joint and adapting the mask timing, the model is directed to focus on 
key movements during training, enhancing the quality of motion generation. 
Experimental results demonstrate that DMS outperforms traditional methods across 
multiple evaluation metrics, achieving a 15.3% reduction in FID, a 9.0% reduction 
in trajectory error, and a 6.3% reduction in location error, thereby validating the 
effectiveness and sophistication of the proposed method.

However, most existing masking strategies rely on ϐixed 
patterns or simple random selection [2], which fail to fully 
leverage temporal dynamics and the differences in joint 
motion amplitude. This leads to models that cannot efϐiciently 
capture key motions and timing-dependent dynamics, as 
the masking strategies do not adapt to the unique motion 
properties of different joints and time periods. Thus, designing 
a strategy that dynamically adjusts the mask based on motion 
amplitude and timing characteristics has become crucial for 
improving motion model training and achieving more precise 
behavioural representation.

To address these challenges, we propose a dynamic 
masking strategy based on motion amplitude. This method 
dynamically adjusts the mask by combining joint motion 
amplitude and time series motion features. First, it helps the 

Introduction 

Motion generation, particularly interactive motion 
generation, has become a hot and highly valuable research 
direction in the ϐields of computer vision and human motion 
modelling. With the continued progress of deep learning, 
motion generation models have demonstrated substantial 
potential across various ϐields [1]. The core challenge of these 
models is to generate motions that align with the motion 
trajectories provided by the user, in order to accurately 
produce behaviors that align with the user’s intentions.

During training, masking techniques are commonly 
employed to enhance data diversity and prevent overϐitting. 
In some motion modelling tasks, masking is used to obscure 
joint movements, thereby enhancing the model’s robustness. 

https://crossmark.crossref.org/dialog/?doi=10.29328/journal.jairi.1001009&domain=pdf&date_stamp=2025-11-17
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model focus on critical motions by calculating the motion 
amplitude of each joint and assigning a masking probability 
based on this value, with small-amplitude joints being more 
likely to be masked. Second, the adaptive selection strategy 
dynamically adjusts the masking timing, aligning it with 
periods of mild motion in the time dimension. This ensures 
that the model applies more masking during these periods. 
Finally, our strategy prevents overmasking during periods 
of intense motion or highly relevant time intervals, enabling 
the model to learn key motion information more effectively, 
thereby improving the efϐiciency and effectiveness of model 
training.

We conducted a series of experiments to validate the 
proposed dynamic masking strategy based on motion 
amplitude. The results show that this strategy enhances the 
accuracy of model-generated motions, reduces trajectory 
errors, and addresses the shortcomings of traditional masking 
methods in adapting to dynamic motion characteristics. Our 
approach provides novel insights and a design framework for 
motion generation tasks. The main contributions of this paper 
are as follows:

• In-depth analysis of the impact of joint motion 
amplitude and time series characteristics on motion 
generation control.

• Proposal of a dynamic masking strategy based on 
motion amplitude, which overcomes the limitations 
of traditional methods and enhances the accuracy and 
diversity of generated motions.

• The effectiveness of this strategy was validated on a 
key dataset, resulting in signiϐicant reductions in FID 
values and error metrics. This provides new insights 
for future research on human motion generation.

Related work
Human motion generation

Human motion has become a focal point of academic 
research, particularly in the area of conditional motion 
generation, which has seen signiϐicant advancements. 
Motion generation typically employs multimodal inputs, 
encompassing various control modalities such as text [3-12], 
music [13-17], objects [18-25], 3D scenes [26-28], images 
[29], movements [30,31], and trajectories [32-39].

In the domain of human motion generation, researchers 
have employed diverse methods to enhance the accuracy 
and generalization of models. Traditional motion generation 
techniques largely rely on deep neural networks, particularly 
Convolutional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs). With the continued advancement of deep 
learning, methods based on Generative Adversarial Networks 
(GANs) [40] have also gained popularity for generating high-
quality motion trajectories. These approaches are effective in 

generating motion sequences that exhibit a sense of realism, 
achieved through adversarial training between the generative 
and discriminative networks.

In recent years, several novel approaches have emerged 
to further enhance the performance of motion generation 
models by incorporating interpretability and adaptability. For 
instance, attention mechanism-based methods [41,42] are 
widely utilized in sequence modeling tasks, particularly for 
generating motion trajectories. These methods signiϐicantly 
improve the quality and accuracy of generated motions by 
automatically focusing on key frames or essential parts of 
the action [43]. Additionally, reinforcement learning-based 
approaches [44] have been applied to motion generation, 
especially in dynamic environments, by adaptively adjusting 
the generation strategy, thereby enhancing the ϐlexibility and 
adaptability of the models.

Dynamic masking strategies

Dynamic masking strategies have been successfully 
applied across various domains, demonstrating their ability to 
enhance model performance and efϐiciency, particularly when 
handling complex, time-sensitive data. In ϐields such as natural 
language processing, computer vision, and machine learning, 
dynamic masking strategies improve model robustness, 
generalization, and training efϐiciency by adaptively adjusting 
mask positions. In human movement prediction, dynamic 
masking strategies are also of signiϐicant value, helping 
models focus on large movement changes.

In Natural Language Processing (NLP), dynamic masking 
enhances the model’s contextual understanding and 
generalization ability by randomly masking different parts 
of the input. RoBERTa [45] optimized BERT by employing 
dynamic masking, allowing different words to be randomly 
masked in each training cycle, thereby helping the model 
learn richer contextual information. Similarly, SpanBERT 
[46] improves the effectiveness of question-answering and 
inference tasks by masking consecutive word spans rather 
than individual words, enabling the model to capture long-
distance dependencies.

In computer vision, dynamic masking strategies are widely 
used in tasks such as image restoration, object detection, 
and instance segmentation. In image restoration, dynamic 
masking adaptively selects regions to be masked based 
on the image content, enabling the model to focus more on 
restoring important areas. In object detection and instance 
segmentation, DynaMask [47] introduces a dynamic mask 
resolution selection module, which allows ϐlexible adjustment 
of the masking strategy, thus balancing computational 
efϐiciency and segmentation accuracy.

For human motion prediction, the introduction of dynamic 
masking strategies helps models handle complex motion 
sequences and temporal data more effectively, thereby 
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improving the quality of generated motions. Traditional motion 
generation models typically rely on ϐixed or random masking 
strategies, which may not adequately address situations with 
signiϐicant movement amplitude variations. HumanMAC [48], 
proposed by Chen, et al. predicts future motions through a 
masked motion complementation framework that combines 
observed motion data and generative models, enhancing 
continuity and diversity.

However, these methods often overlook the motion 
amplitude and timing characteristics of joints. To address 
this, we propose a dynamic masking strategy based on motion 
amplitude, which adaptively adjusts the masking probability 
according to the motion amplitude and timing characteristics 
of each joint. This approach not only improves the accuracy 
and diversity of generated results but also addresses the 
limitations of traditional methods that struggle to adapt to 
large motion variations.

Methods
Human motion generation presents several challenges, with 

the primary one being the efϐicient generation of natural and 
realistic motion trajectories. A key difϐiculty lies in accurately 
generating the complex dynamic properties of human joints, 
where the motion amplitude and its variation across different 
joints in a time series must be properly handled. Traditional 
motion generation models often overlook these variations, 
leading to issues such as unnatural or distorted movements, 
especially in areas where joint motion amplitudes are either 
very small or exceptionally large.

To address this challenge, we propose an advanced 
training methodology that dynamically adjusts the masking 
probability based on motion amplitude. This approach allows 
the model to better capture the subtle differences in motion 
across joints, resulting in more realistic and accurate motion 
generation. Speciϐically, the method assigns different masking 
probabilities to regions with varying motion amplitudes, 
enabling the model to focus on critical motion differences 
between joints and improve the quality of generated motions.

The key idea behind this method is the dynamic masking 
strategy, which adjusts joint information during the training 
process. By selectively masking certain parts of the motion 
data based on amplitude, the model is forced to focus more 
on the important motion dynamics. This process not only 
mitigates the inϐluence of irrelevant or low-dynamic regions 
but also enhances the model’s ability to generate motion 
sequences that align with the underlying behavioural patterns.

The generation process using our proposed method is 
illustrated in Figure 1. The steps involved are as follows: 
First, human motion data and their corresponding textual 
descriptions are extracted from a dataset. The motion 
sequences and the text encodings are then generated. These 
motion sequences are subsequently input into the masking 

strategy module, where the motion amplitudes are computed, 
and masking probabilities are dynamically assigned to 
different regions. The dynamic masking process is then applied 
to adjust the motion information, ensuring that critical motion 
details are preserved. Finally, the adjusted motion sequences, 
along with the associated text encodings, are passed into 
a diffusion model to generate the corresponding human 
motions. This dynamic approach signiϐicantly improves 
the quality and naturalness of the generated motions while 
capturing the nuanced variations in joint movements. This 
comprehensive method facilitates the creation of high-
quality, realistic motions by dynamically adjusting for motion 
amplitude differences, thereby offering a more accurate 
and natural representation of human movement in motion 
generation tasks.

Joint masking strategy based on motion amplitude

To improve the training efϐiciency and effectiveness of 
motion generation models, this study introduces a dynamic 
joint masking strategy based on motion amplitude. This 
strategy aims to reϐine the model’s learning process by 
dynamically adjusting the masking probabilities according 
to the motion amplitude of each joint. The core objective is 
to enable the model to focus on the most critical movement 
patterns, which are often characterised by larger motion 
amplitudes, ensuring a more efϐicient learning process.

The masking strategy is designed to be adaptive, with 
the motion amplitude of each joint playing a crucial role in 
determining its masking probability. Joints with larger motion 
amplitudes, which typically correspond to more signiϐicant 
or expressive movements, are assigned lower masking 
probabilities, whereas joints with smaller motion amplitudes, 
often indicative of less critical or background motions, are 
given higher masking probabilities. This dynamic adjustment 
helps the model concentrate on the key motion details that 
are most relevant for accurately generating emotionally 
expressive movements.

The rationale behind this approach is to leverage the 
natural variations in joint motion amplitudes to prioritise 
learning the more expressive, dynamic, and important 
motions. By doing so, the model can focus its attention 
on these essential movements during training, leading to 
improved accuracy and realism in the generated motions. This 
comprehensive method facilitates the creation of high-quality, 
behaviorally consistent motions by dynamically adjusting for 
motion amplitude differences.

Motion amplitude calculation: The motion amplitude 
for each joint is calculated by evaluating the displacement 
differences between consecutive frames over the course of the 
time series. Speciϐically, the model calculates the difference in 
the position of the nth joint between two consecutive time 
steps Jt + 1, n, using the Euclidean distance. This displacement 
difference is then averaged across all the frames in the time 
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sequence to yield a single value representing the joint’s overall 
motion amplitude, Mn.

The formula is expressed as follows:

2
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where Mn denotes the motion amplitude of the nth joint, 
T is the length of the time sequence, and J{t,n} denotes the 
position of the n joint in the t frame. 

Here:

• Mn is the motion amplitude of the nth joint.

• T is the total number of frames in the time sequence.

• Jt is the position of the n joint at the t frame.

• The|| · || denotes the Euclidean norm, which measures 
the straight-line distance between the positions of the joint at 
consecutive time steps.

By calculating this motion amplitude for each joint, the 
model quantiϐies how much each joint is moving over time. 
Joints with larger motion amplitudes, indicating they are 
more dynamic or play a more signiϐicant role in the overall 
motion, are assigned a higher probability of being retained. 
This approach ensures that the model prioritises masking 
those joints with greater inϐluence on the motion, promoting 
better generalisation during training.

Mask probability assignment and joint selection: In 
the mask probability assignment and joint selection process, 
the motion amplitude of each joint is used to determine the 
probability that the joint will be masked during training. 
Speciϐically, the model normalises the motion amplitudes of 
all controllable joints to ensure that joints with small motion 
amplitudes are more likely to be selected for masking, and 
joints with larger motion amplitudes are more likely to be 

retained. This normalisation process helps to prioritise the 
more dynamic joints, which are crucial for the motion, while 
still allowing for diversity in the selection of joints to be 
masked.

The formula for calculating the mask probability is:
int ,jo n

n
kk C
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M
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Where C denotes the set of controllable joints and Pn
joint 

denotes the probability that the n joint is retained in the mask 
sequence. Where:

• Pn
joint represents the probability that the n joint is 

selected to be retained in the mask sequence.

• Mn is the motion amplitude of the n joint.

• The denominator is the sum of the motion amplitudes 
of all controllable joints in the set C, which normalises 
the individual probabilities.

At each training iteration, the model dynamically 
determines how many joints to mask, selecting a random 
number between 1 and 3. This variability in the number of 
masked joints during training enhances the model’s ability to 
generalise by preventing overϐitting to speciϐic joints. By using 
this approach, the model ensures a more diverse selection 
of joints for masking, which ultimately contributes to better 
performance across different scenarios and conditions.

Dynamic masking strategy based on time 
dimension

In addition to the masking strategy applied to the 
joint dimension, this study introduces a dynamic masking 
approach speciϐically designed for the time dimension. This 
temporal masking strategy recognizes that not all frames 
within a motion sequence contribute equally to the overall 
motion information. Certain moments within the sequence 
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Figure 1: Flowchart of motion generation and dynamic masking strategy.
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may carry more signiϐicant motion data, which is crucial for 
training a robust model. Therefore, we dynamically assign 
mask weights to each frame based on its motion amplitude, 
which is a measure of how much movement occurs within a 
particular time frame.

Frames with larger motion amplitudes, indicating that they 
contain more signiϐicant motion, are assigned lower masking 
probabilities. This allows the model to place more focus on 
these critical moments where the motion is more intense, 
which are likely to contain the most informative features 
necessary for learning complex motion patterns. Conversely, 
frames with smaller motion amplitudes, representing less 
signiϐicant motion, are assigned higher probabilities for 
masking.

By implementing this strategy, the model is encouraged 
to prioritise frames that are rich in motion data, ensuring 
that the most important aspects of the motion sequence are 
preserved during training. This dynamic masking approach 
not only enhances the model’s ability to learn from the most 
relevant parts of the motion sequence but also helps improve 
its overall generalisation by focusing on the most temporally 
signiϐicant moments.

This method facilitates more targeted learning, where the 
model is exposed to the varying dynamics of the motion while 
being trained in a way that reduces the risk of overϐitting to 
less informative frames. As a result, the model becomes better 
equipped to handle complex motion patterns and exhibit 
improved performance during inference.

Time weight calculation: In the time dimension, the 
motion of the selected joints in each frame is initially calculated 
to assess how much movement occurs between consecutive 
frames. This motion magnitude is determined by computing 
the positional change of each joint between the current frame 
t and the previous frame t − 1. The displacement is measured 
using the Euclidean distance between the joint positions at 
these two time points. To account for the overall temporal 
continuity of the motion sequence and ensure consistency, the 
motion amplitude of each frame is then normalised across the 
entire sequence.

The normalisation process ensures that the motion 
amplitudes are scaled in a way that reϐlects their relative 
signiϐicance across the entire sequence, allowing for a fair 
comparison between frames. This normalised value is used 
to calculate a temporal weight for each frame, denoted as wt, 
which quantiϐies the importance of each frame in the training 
process.

Frames with larger motion amplitudes, signifying more 
signiϐicant or dynamic movement, are assigned higher 
temporal weights. These frames are considered more 
important for training, as they are likely to contain crucial 
information about the motion. On the other hand, frames with 

smaller motion amplitudes, indicating minimal movement, 
are assigned lower weights. This differential weighting 
mechanism ensures that the model places more emphasis on 
the frames that contribute more signiϐicantly to the overall 
motion sequence.

The formula for calculating the time weight is:
2
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• S represents the set of selected joints.

• Jt denotes the position of the nth joint at time t.

• The Euclidean norm || · || measures the displacement of 
each joint between consecutive frames.

• T is the total number of frames in the sequence.

By using this temporal weight calculation, the model is 
guided to focus more on the frames that carry signiϐicant 
motion information, thus optimising the training process to 
capture the most critical dynamic features of the motion.

Construction and application of masking matrix: Once 
the time weights are calculated for each frame, the next step 
is to construct the masking matrix. The masking matrix is 
a binary matrix that indicates which frames in the motion 
sequence should be masked. Using the time weights as a basis, 
we randomly select a certain percentage of time frames to 
be masked during each training iteration. The proportion of 
frames selected for masking is determined according to their 
respective time weights: frames with higher motion amplitudes 
(i.e., more critical moments) will have higher probabilities of 
being selected for retaining in the mask sequence, ensuring 
that more signiϐicant moments are retained.

The construction process of the mask matrix involves 
several steps:

• First, initialize a matrix with all values set to false, 
indicating that initially, all joint mask states are set to 
False.

• Selection of Frames to be retained: Based on the time 
weights, a certain percentage of frames are selected for 
retaining. These frames correspond to moments with 
higher motion intensity, as indicated by their time 
weight.

• Application of retain: Apply the retained to the 
selected frames by setting the retained values of the 
corresponding joints to True at the designated time 
points. The retained positions for these frames are 
concentrated in regions where joint movement is 
signiϐicant and temporally important, ensuring the 
preservation of critical motion information.

By constructing the mask matrix in this way, the model is 
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guided to focus its learning efforts on the most important time 
moments of the motion. This ensures that sufϐicient semantic 
information about the motion is preserved, particularly for 
the high-intensity motion moments, while less important or 
static moments will receive less attention. As a result, the 
model learns to generate more realistic and dynamic human 
motion, with improved accuracy and coherence in its output.

Theoretical connection and cognitive motivation

The proposed Dynamic Masking Strategy (DMS) is not only 
an effective technique for improving model generalization 
but also aligns conceptually with human motion perception 
and attention mechanisms. Studies in cognitive science 
indicate that humans tend to focus attention on body parts 
or time segments with large motion amplitudes, signiϐicant 
velocity changes, or event boundaries, as these regions carry 
higher informational value for motion understanding and 
prediction. By computing per-joint motion amplitudes and 
frame-wise dynamic variations, DMS automatically identiϐies 
and prioritizes these highly informative spatiotemporal 
regions during training. This design can be regarded as a 
computational analogue of human attention allocation, where 
the model selectively emphasizes salient motion cues while 
suppressing redundant or less informative ones. Consequently, 
DMS enables the model to learn motion representations that 
are more consistent with human perceptual focus, enhancing 
both semantic coherence and naturalness of the generated 
motion. In this sense, the proposed strategy not only improves 
performance empirically but also provides a solid theoretical 
grounding inspired by human perceptual and predictive 
coding mechanisms.

Experiments
Dataset and evaluation methods

In this study, we utilise the HumanML3D dataset for the 
text-based motion generation task. The HumanML3D dataset 
[10] contains 14,616 unique motion capture data samples 
sourced from the AMASS [49] and HumanAct12 [10] datasets, 
along with 44,970 corresponding text descriptions. This 
dataset provides extensive human motion data, making it 
highly suitable for evaluating the effectiveness of text-based 
motion generation models.

We adopt the evaluation framework proposed by Guo, 
et al. [50] to comprehensively assess the generated motion 
sequences using multiple metrics. First, the Fréchet Inception 
Distance (FID) is used to evaluate the naturalness and ϐidelity 
of the generated motions by measuring the difference between 
the generated and true distributions in the feature space of a 
pre-trained model. A lower FID value indicates higher quality 
in the generated motions.

Next, R-Precision is employed to assess the relevance of 
the generated motion sequences to the corresponding text 
descriptions. Speciϐically, the relevance of a motion sequence 

is measured against 32 textual descriptions, one of which is the 
true description, and the other 31 are random. The accuracy 
is evaluated based on the ϐirst 3 matches by calculating the 
Euclidean distance between the motion embedding and the 
textual description.

Additionally, we use Diversity to measure the variation in 
the generated motions. Diversity is quantiϐied by calculating 
the average cumulative difference between randomly paired 
generated sequences in the test set.

To evaluate control accuracy, we introduce several 
control performance metrics. These include trajectory error, 
location error, and mean error, which measure the 3D control 
accuracy of the controlled joint locations at keyframes. 
Trajectory error indicates the percentage of keyframe joint 
positions deviating from a set trajectory threshold. Location 
error measures the percentage of keyframe locations that fall 
outside a given distance constraint. Mean error calculates the 
average Euclidean distance between a joint’s position and the 
corresponding control trajectory at each keyframe.

During evaluation, all models were trained to generate 
196-frame motion sequences at ϐive keyframe density levels: 
1, 2, 5, 49 (25% density), and 196 (100% density). The time 
step of the keyframes was randomly sampled, and all models 
were provided with real trajectories as spatial control signals 
during both training and evaluation. We report the average 
performance across all density levels. For training, we 
followed the warm-up procedure outlined in the OmniControl 
article.

Comparison with other methods

We conducted a comprehensive comparison between our 
proposed method and the OmniControl method, using data 
from our replicated model. The results were analysed using 
multiple evaluation metrics, and the comparison outcomes 
are presented in the table. The metrics compared include FID 
(Fréchet Inception Distance), R-precision (Top-3), Diversity, 
Trajectory Error (Traj. Err.), Location Error (Loc. Err.), and 
Average Error (Avg. Err.). For each metric, the performance is 
shown separately based on different control joints.

As shown in Table 1, our method outperforms OmniControl 
on most key metrics. Speciϐically, on the FID metric, our 
method achieves a clear advantage with an average value 
of 0.180, compared to 0.297 for OmniControl, indicating 
signiϐicantly lower error in the quality of the generated 
motions. Additionally, our method demonstrates more stable 
performance in terms of Diversity, with a mean value of 9.529, 
compared to 9.828 for OmniControl, and shows superior 
performance across multiple control joints, suggesting that 
our model maintains a higher level of diversity throughout the 
generation process.

In terms of error-related metrics (Trajectory Error, 
Location Error, and Average Error), our method generally 
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motion amplitude-based joint mask in improving the accuracy 
and stability of the model. The removal of this mask results 
in degradation of the model’s performance across several key 
metrics, particularly in trajectory error and location accuracy. 
This suggests that our dynamic masking strategy effectively 
enhances generation quality and improves the model’s 
accuracy in the motion generation task.

This ablation Study further conϐirms the crucial role 
of motion amplitude-based joint masking in the motion 
generation task, providing strong evidence for the effectiveness 
of our proposed masking strategy.

Removal of time dimension masks: To further validate 
the effectiveness of our proposed dynamic masking strategy 
based on motion magnitude, we conducted an ablation 
experiment by removing the time dimension mask. This 
experiment compares the performance changes after 
removing the time dimension mask, which involves excluding 
the temporal magnitude information from the motion data.

Table 3 presents the experimental results. Our method 
outperforms the strategy without the time dimension mask 
across three key metrics: trajectory error (Traj. Err.), location 
error (Loc. Err.), and average error (Avg. Err.). With the 
removal of the time dimension mask, the trajectory error 
increases from 0.089 to 0.100, the location error rises from 
0.015 to 0.016, and the average error increases from 0.061 
to 0.063. These results indicate that the inclusion of the time 

performs better. For instance, the mean trajectory error is 
0.089 compared to 0.139 for OmniControl; the mean location 
error is 0.015, notably lower than 0.019 for OmniControl; and 
the mean error is 0.061, compared to 0.083 for OmniControl, 
indicating that our method generates more accurate results.

In summary, our method demonstrates signiϐicant 
advantages in FID, diversity, and error-related metrics, 
particularly in terms of generation quality and error control. 
This suggests that our proposed model not only maintains 
diversity and stability but also produces more accurate, 
high-quality results, thus more effectively simulating and 
representing human motion.

Ablation experiments

Removal of motion magnitude-based joint masks: To 
further validate the effectiveness of our proposed dynamic 
masking strategy based on motion amplitude, we conducted 
an ablation experiment by removing the motion amplitude-
based joint mask. In this experiment, the dynamic masks based 
on motion amplitude were removed, and only the standard 
global masks were used for comparative analysis.

The results of the ablation experiment are shown in 
Table 2. From the table, it is evident that removing the motion 
amplitude-based joint mask leads to a decrease in the model’s 
overall performance, as reϐlected in the trajectory error (Traj. 
Err.), location error (Loc. Err.), and average error (Avg. Err.).

In terms of trajectory error, our method achieves a mean 
value of 0.089, while the error after removing the joint mask 
increases to 0.097, indicating an approximate 9.0% increase 
in error. For location error, the mean value of our method 
is 0.015, which is 6.3% lower than 0.016 after removing 
the mask, demonstrating the positive impact of the motion 
amplitude mask on accurate localization. Finally, the average 
error in our method is 0.061, while after removing the mask, 
it increases to 0.063, reϐlecting a 3.3% increase.

These initial results highlight the signiϐicant role of the 

Table 1: Comparison of quantitative results of our method with the current OmniControl method on the HumanML3D test set. Best scores are highlighted in bold.
Method Control FID R-precision Diversity Traj. Err. Loc. Err. Avg. Err.

Real - 0.002 0.797 9.503 0.000 0.000 0.000
OmniControl Pelvis 0.323 0.691 9.854 0.078 0.013 0.064
Ours(On all) Pelvis 0.160 0.662 9.376 0.075 0.014 0.057
OmniControl Head 0.316 0.687 9.921 0.093 0.017 0.076
Ours(On all) Head 0.222 0.662 9.565 0.086 0.015 0.056
OmniControl Left Hand 0.264 0.690 9.661 0.200 0.028 0.119
Ours(On all) Left Hand 0.199 0.678 9.432 0.105 0.021 0.060
OmniControl Right Hand 0.264 0.690 9.661 0.200 0.028 0.119
Ours(On all) Right Hand 0.204 0.685 9.399 0.067 0.012 0.054
OmniControl Left Foot 0.292 0.689 9.855 0.123 0.017 0.062
Ours(On all) Left Foot 0.136 0.652 9.741 0.099 0.015 0.070
OmniControl Right Foot 0.307 0.693 9.901 0.143 0.019 0.065
Ours(On all) Right Foot 0.161 0.663 9.658 0.101 0.016 0.070
OmniControl Average 0.297 0.691 9.828 0.139 0.019 0.083
Ours(On all) Average 0.180 0.667 9.529 0.089 0.015 0.061

Table 2: Ablation Study to Remove the Effect of Joint Masking Based on Motion 
Amplitude.

Method Joint Traj. Err.
↓ (50 cm)

Loc. err.
↓ (50 cm)

Avg. err.
↓ ( cm )

Ours Average 0.089 0.015 0.061
Removing Joint Dimension Mask Average 0.097 0.016 0.063

Table 3: Ablation study of the effect of removing time dimension masks.

Method Joint Traj. err.
↓ (50 cm)

Loc. err.
↓ (50 cm)

Avg. err.
↓ ( cm )

Ours Average 0.089 0.015 0.061
Removing Time Dimension Mask Average 0.100 0.016 0.063
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dimension mask is effective in reducing errors during the 
motion generation process, particularly in enhancing the 
accuracy of the trajectory and location.

These ϐindings clearly demonstrate the effectiveness of our 
dynamic masking strategy that adjusts the mask based on both 
motion amplitude and temporal characteristics. Removing the 
time dimension mask leads to performance degradation, as 
the model fails to adequately capture the temporal dynamics 
of the motion. Therefore, retaining the temporal dimension 
mask is crucial for enhancing the model’s ability to understand 
and generate movements.

This ablation experiment further underscores the 
important role of the time dimension mask in improving 
model robustness and generation accuracy, providing strong 
evidence for the effectiveness of our proposed masking 
strategy.

Comparison of masking strategies: In this section, we 
further validate the effectiveness of our proposed strategy, 
which assigns higher masking probabilities to regions with 
smaller motion amplitudes, through two ablation experiments. 
The two experiments are: 1) higher masking probabilities in 
regions with large motion amplitudes, and 2) higher masking 
probabilities in regions with medium motion amplitudes. We 
compare the results of these experiments with our proposed 
method to analyse the impact of the masking strategy on 
model performance.

Table 4 presents the results of these experiments. As 
shown in the table, the model errors exhibit varying degrees 
of change. Compared to our method, the strategy of assigning 
higher masking probabilities to regions with larger motion 
amplitudes leads to an increase in trajectory error (Traj. 
Err.) from 0.089 to 0.113, which represents an increase of 
approximately 26.9%. Similarly, location error (Loc. Err.) 
increased from 0.015 to 0.018, a 20.0% increase.

For the strategy with higher masking probabilities in 
regions with moderate motion amplitudes, the trajectory 
error is 0.114, and the location error is 0.020, representing 
increases of about 28.1% and 33.3%, respectively, compared 
to our method. However, the average error (Avg. Err.) shows 
less variation across the three methods, with values of 0.061, 
0.070, and 0.070, respectively.

These results demonstrate that when the masking 
probability is higher in regions with larger or medium motion 

amplitudes, the model’s error increases. Compared to our 
proposed strategy, which assigns higher probabilities to 
regions with smaller motion amplitudes, the use of larger or 
medium motion amplitude regions for masking negatively 
impacts the generation accuracy. This further validates the 
effectiveness of our dynamic masking strategy based on 
motion amplitude in improving both the quality and accuracy 
of generation.

Potential applications and future directions

The enhanced accuracy and stability achieved by the 
Dynamic Masking Strategy suggest its broad applicability 
across multiple domains:

Virtual Human Animation and Film Production – DMS can 
generate more natural and precise human motions, reducing 
manual correction efforts in digital character animation and 
motion completion tasks.

Immersive Interaction and Virtual/Augmented Reality 
(VR/AR) – By improving the realism of generated motions, 
DMS can enhance the responsiveness and immersion of virtual 
agents in real-time interactive environments.

Intelligent Motion Synthesis and Robotics – The attention-
guided masking of key joints enables better coordination 
and adaptability in robotic motion planning and biomimetic 
control.

Action Understanding and Behavior Analysis – The 
masking and attention mechanism introduced in DMS can 
also beneϐit recognition and prediction tasks by encouraging 
models to focus on the most discriminative spatiotemporal 
features. Overall, DMS not only advances human motion 
generation but also offers a promising foundation for future 
research in multimodal interaction, digital humans, and 
intelligent robotic systems.

Conclusion
This paper proposes a dynamic masking strategy (DMS) that 

integrates both motion amplitude and the time dimension. The 
method introduces a motion amplitude computation module 
and a dynamic masking allocation mechanism, enhancing the 
model’s ability to adaptively adjust joint motion amplitude and 
temporal characteristics in human motion generation. This 
approach effectively overcomes the limitations of traditional 
methods in generating complex dynamic motions.

The experimental results validate the effectiveness of the 
proposed method, demonstrating a signiϐicant reduction in 
generation error, improved motion accuracy, and enhanced 
model performance in handling dynamic motion features. 
This method provides a novel research direction for motion 
generation tasks, with practical signiϐicance in improving the 
accuracy and realism of motion generation.

Table 4: Comparison of the results of the ablation experiments with higher masking 
probability in large and moderate motion amplitude regions, respectively.

Method Joint Trai. Err. 
↓ (50 cm)

Loc. Err.
↓ (50 cm)

Avg. err.
↓ (50 cm)

Ours Average 0.089 0.015 0.061
Higher masking in lager amplitude Average 0.113 0.018 0.070

Higer masking in moderate 
amplitude Average 0.114 0.020 0.070
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