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Abstract

'l) Check for updates

Human motion generation has become an important research direction OOPENACCESS
in computer vision and human motion modelling. Current motion generation
methods typically rely on static or random masking during training, which fail to
adequately capture dynamic variations in joint movement amplitude and temporal
characteristics, resulting in suboptimal accuracy in generated motions. To address
this, we propose a dynamic masking strategy (DMS) based on motion amplitude,
which dynamically adjusts the mask probability distribution by incorporating both
motion amplitude and temporal features. By calculating the motion amplitude
of each joint and adapting the mask timing, the model is directed to focus on
key movements during training, enhancing the quality of motion generation.
Experimental results demonstrate that DMS outperforms traditional methods across
multiple evaluation metrics, achieving a 15.3% reduction in FID, a 9.0% reduction
in trajectory error, and a 6.3% reduction in location error, thereby validating the
effectiveness and sophistication of the proposed method.

However, most existing masking strategies rely on fixed
patterns or simple random selection [2], which fail to fully
leverage temporal dynamics and the differences in joint
motion amplitude. This leads to models that cannot efficiently
capture key motions and timing-dependent dynamics, as

Introduction

Motion generation, particularly interactive motion
generation, has become a hot and highly valuable research
direction in the fields of computer vision and human motion

modelling. With the continued progress of deep learning,
motion generation models have demonstrated substantial
potential across various fields [1]. The core challenge of these
models is to generate motions that align with the motion
trajectories provided by the user, in order to accurately
produce behaviors that align with the user’s intentions.

During training, masking techniques are commonly
employed to enhance data diversity and prevent overfitting.
In some motion modelling tasks, masking is used to obscure
joint movements, thereby enhancing the model’s robustness.

https://doi.org/10.29328/journal.jairi.1001009

the masking strategies do not adapt to the unique motion
properties of different joints and time periods. Thus, designing
a strategy that dynamically adjusts the mask based on motion
amplitude and timing characteristics has become crucial for
improving motion model training and achieving more precise
behavioural representation.

To address these challenges, we propose a dynamic
masking strategy based on motion amplitude. This method
dynamically adjusts the mask by combining joint motion
amplitude and time series motion features. First, it helps the
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model focus on critical motions by calculating the motion
amplitude of each joint and assigning a masking probability
based on this value, with small-amplitude joints being more
likely to be masked. Second, the adaptive selection strategy
dynamically adjusts the masking timing, aligning it with
periods of mild motion in the time dimension. This ensures
that the model applies more masking during these periods.
Finally, our strategy prevents overmasking during periods
of intense motion or highly relevant time intervals, enabling
the model to learn key motion information more effectively,
thereby improving the efficiency and effectiveness of model
training.

We conducted a series of experiments to validate the
proposed dynamic masking strategy based on motion
amplitude. The results show that this strategy enhances the
accuracy of model-generated motions, reduces trajectory
errors, and addresses the shortcomings of traditional masking
methods in adapting to dynamic motion characteristics. Our
approach provides novel insights and a design framework for
motion generation tasks. The main contributions of this paper
are as follows:

e In-depth analysis of the impact of joint motion
amplitude and time series characteristics on motion
generation control.

e Proposal of a dynamic masking strategy based on
motion amplitude, which overcomes the limitations
of traditional methods and enhances the accuracy and
diversity of generated motions.

e The effectiveness of this strategy was validated on a
key dataset, resulting in significant reductions in FID
values and error metrics. This provides new insights
for future research on human motion generation.

Related work
Human motion generation

Human motion has become a focal point of academic
research, particularly in the area of conditional motion
generation, which has seen significant advancements.
Motion generation typically employs multimodal inputs,
encompassing various control modalities such as text [3-12],
music [13-17], objects [18-25], 3D scenes [26-28], images
[29], movements [30,31], and trajectories [32-39].

In the domain of human motion generation, researchers
have employed diverse methods to enhance the accuracy
and generalization of models. Traditional motion generation
techniques largely rely on deep neural networks, particularly
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs). With the continued advancement of deep
learning, methods based on Generative Adversarial Networks
(GANs) [40] have also gained popularity for generating high-
quality motion trajectories. These approaches are effective in
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generating motion sequences that exhibit a sense of realism,
achieved through adversarial training between the generative
and discriminative networks.

In recent years, several novel approaches have emerged
to further enhance the performance of motion generation
models by incorporating interpretability and adaptability. For
instance, attention mechanism-based methods [41,42] are
widely utilized in sequence modeling tasks, particularly for
generating motion trajectories. These methods significantly
improve the quality and accuracy of generated motions by
automatically focusing on key frames or essential parts of
the action [43]. Additionally, reinforcement learning-based
approaches [44] have been applied to motion generation,
especially in dynamic environments, by adaptively adjusting
the generation strategy, thereby enhancing the flexibility and
adaptability of the models.

Dynamic masking strategies

Dynamic masking strategies have been successfully
applied across various domains, demonstrating their ability to
enhance model performance and efficiency, particularly when
handling complex, time-sensitive data. In fields such as natural
language processing, computer vision, and machine learning,
dynamic masking strategies improve model robustness,
generalization, and training efficiency by adaptively adjusting
mask positions. In human movement prediction, dynamic
masking strategies are also of significant value, helping
models focus on large movement changes.

In Natural Language Processing (NLP), dynamic masking
enhances the model’'s contextual understanding and
generalization ability by randomly masking different parts
of the input. RoBERTa [45] optimized BERT by employing
dynamic masking, allowing different words to be randomly
masked in each training cycle, thereby helping the model
learn richer contextual information. Similarly, SpanBERT
[46] improves the effectiveness of question-answering and
inference tasks by masking consecutive word spans rather
than individual words, enabling the model to capture long-
distance dependencies.

In computer vision, dynamic masking strategies are widely
used in tasks such as image restoration, object detection,
and instance segmentation. In image restoration, dynamic
masking adaptively selects regions to be masked based
on the image content, enabling the model to focus more on
restoring important areas. In object detection and instance
segmentation, DynaMask [47] introduces a dynamic mask
resolution selection module, which allows flexible adjustment
of the masking strategy, thus balancing computational
efficiency and segmentation accuracy.

For human motion prediction, the introduction of dynamic
masking strategies helps models handle complex motion
sequences and temporal data more effectively, thereby
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improvingthe quality ofgenerated motions. Traditional motion
generation models typically rely on fixed or random masking
strategies, which may not adequately address situations with
significant movement amplitude variations. HumanMAC [48],
proposed by Chen, et al. predicts future motions through a
masked motion complementation framework that combines
observed motion data and generative models, enhancing
continuity and diversity.

However, these methods often overlook the motion
amplitude and timing characteristics of joints. To address
this, we propose a dynamic masking strategy based on motion
amplitude, which adaptively adjusts the masking probability
according to the motion amplitude and timing characteristics
of each joint. This approach not only improves the accuracy
and diversity of generated results but also addresses the
limitations of traditional methods that struggle to adapt to
large motion variations.

Methods

Humanmotion generation presentsseveral challenges, with
the primary one being the efficient generation of natural and
realistic motion trajectories. A key difficulty lies in accurately
generating the complex dynamic properties of human joints,
where the motion amplitude and its variation across different
joints in a time series must be properly handled. Traditional
motion generation models often overlook these variations,
leading to issues such as unnatural or distorted movements,
especially in areas where joint motion amplitudes are either
very small or exceptionally large.

To address this challenge, we propose an advanced
training methodology that dynamically adjusts the masking
probability based on motion amplitude. This approach allows
the model to better capture the subtle differences in motion
across joints, resulting in more realistic and accurate motion
generation. Specifically, the method assigns different masking
probabilities to regions with varying motion amplitudes,
enabling the model to focus on critical motion differences
between joints and improve the quality of generated motions.

The key idea behind this method is the dynamic masking
strategy, which adjusts joint information during the training
process. By selectively masking certain parts of the motion
data based on amplitude, the model is forced to focus more
on the important motion dynamics. This process not only
mitigates the influence of irrelevant or low-dynamic regions
but also enhances the model’s ability to generate motion
sequences that align with the underlying behavioural patterns.

The generation process using our proposed method is
illustrated in Figure 1. The steps involved are as follows:
First, human motion data and their corresponding textual
descriptions are extracted from a dataset. The motion
sequences and the text encodings are then generated. These
motion sequences are subsequently input into the masking
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strategy module, where the motion amplitudes are computed,
and masking probabilities are dynamically assigned to
differentregions. The dynamic masking processis then applied
to adjust the motion information, ensuring that critical motion
details are preserved. Finally, the adjusted motion sequences,
along with the associated text encodings, are passed into
a diffusion model to generate the corresponding human
motions. This dynamic approach significantly improves
the quality and naturalness of the generated motions while
capturing the nuanced variations in joint movements. This
comprehensive method facilitates the creation of high-
quality, realistic motions by dynamically adjusting for motion
amplitude differences, thereby offering a more accurate
and natural representation of human movement in motion
generation tasks.

Jointmasking strategy based on motion amplitude

To improve the training efficiency and effectiveness of
motion generation models, this study introduces a dynamic
joint masking strategy based on motion amplitude. This
strategy aims to refine the model’s learning process by
dynamically adjusting the masking probabilities according
to the motion amplitude of each joint. The core objective is
to enable the model to focus on the most critical movement
patterns, which are often characterised by larger motion
amplitudes, ensuring a more efficient learning process.

The masking strategy is designed to be adaptive, with
the motion amplitude of each joint playing a crucial role in
determining its masking probability. Joints with larger motion
amplitudes, which typically correspond to more significant
or expressive movements, are assigned lower masking
probabilities, whereas joints with smaller motion amplitudes,
often indicative of less critical or background motions, are
given higher masking probabilities. This dynamic adjustment
helps the model concentrate on the key motion details that
are most relevant for accurately generating emotionally
expressive movements.

The rationale behind this approach is to leverage the
natural variations in joint motion amplitudes to prioritise
learning the more expressive, dynamic, and important
motions. By doing so, the model can focus its attention
on these essential movements during training, leading to
improved accuracy and realism in the generated motions. This
comprehensive method facilitates the creation of high-quality,
behaviorally consistent motions by dynamically adjusting for
motion amplitude differences.

Motion amplitude calculation: The motion amplitude
for each joint is calculated by evaluating the displacement
differences between consecutive frames over the course of the
time series. Specifically, the model calculates the difference in
the position of the nth joint between two consecutive time
steps ], + 1, n, using the Euclidean distance. This displacement
difference is then averaged across all the frames in the time
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Figure I: Flowchart of motion generation and dynamic masking strategy.

sequence to yield a single value representing the joint’s overall
motion amplitude, M.

The formula is expressed as follows:
1 T-1
Mn :ﬁgu‘]tﬂ,n -J t.n||? (1)

where M, denotes the motion amplitude of the nth joint,
T is the length of the time sequence, and J{t,n} denotes the
position of the n joint in the t frame.

Here:

e M is the motion amplitude of the nth joint.

. T is the total number of frames in the time sequence.
e ] isthe position of the n joint at the ¢ frame.

e  Thel|- || denotes the Euclidean norm, which measures
the straight-line distance between the positions of the joint at
consecutive time steps.

By calculating this motion amplitude for each joint, the
model quantifies how much each joint is moving over time.
Joints with larger motion amplitudes, indicating they are
more dynamic or play a more significant role in the overall
motion, are assigned a higher probability of being retained.
This approach ensures that the model prioritises masking
those joints with greater influence on the motion, promoting
better generalisation during training.

Mask probability assignment and joint selection: In
the mask probability assignment and joint selection process,
the motion amplitude of each joint is used to determine the
probability that the joint will be masked during training.
Specifically, the model normalises the motion amplitudes of
all controllable joints to ensure that joints with small motion
amplitudes are more likely to be selected for masking, and
joints with larger motion amplitudes are more likely to be

https://doi.org/10.29328/journal.jairi.1001009

retained. This normalisation process helps to prioritise the
more dynamic joints, which are crucial for the motion, while
still allowing for diversity in the selection of joints to be
masked.

The formula for calculating the mask probability is:

M, ,VneC (2)

Zkec M

Where C denotes the set of controllable joints and P "
denotes the probability that the n joint is retained in the mask
sequence. Where:

joint __
poi _

e P ™ represents the probability that the n joint is
selected to be retained in the mask sequence.

e M is the motion amplitude of the n joint.

e The denominator is the sum of the motion amplitudes
of all controllable joints in the set C, which normalises
the individual probabilities.

At each training iteration, the model dynamically
determines how many joints to mask, selecting a random
number between 1 and 3. This variability in the number of
masked joints during training enhances the model’s ability to
generalise by preventing overfitting to specific joints. By using
this approach, the model ensures a more diverse selection
of joints for masking, which ultimately contributes to better
performance across different scenarios and conditions.

Dynamic masking strategy based on time
dimension

In addition to the masking strategy applied to the
joint dimension, this study introduces a dynamic masking
approach specifically designed for the time dimension. This
temporal masking strategy recognizes that not all frames
within a motion sequence contribute equally to the overall
motion information. Certain moments within the sequence
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may carry more significant motion data, which is crucial for
training a robust model. Therefore, we dynamically assign
mask weights to each frame based on its motion amplitude,
which is a measure of how much movement occurs within a
particular time frame.

Frames with larger motion amplitudes, indicating that they
contain more significant motion, are assigned lower masking
probabilities. This allows the model to place more focus on
these critical moments where the motion is more intense,
which are likely to contain the most informative features
necessary for learning complex motion patterns. Conversely,
frames with smaller motion amplitudes, representing less
significant motion, are assigned higher probabilities for
masking.

By implementing this strategy, the model is encouraged
to prioritise frames that are rich in motion data, ensuring
that the most important aspects of the motion sequence are
preserved during training. This dynamic masking approach
not only enhances the model’s ability to learn from the most
relevant parts of the motion sequence but also helps improve
its overall generalisation by focusing on the most temporally
significant moments.

This method facilitates more targeted learning, where the
model is exposed to the varying dynamics of the motion while
being trained in a way that reduces the risk of overfitting to
less informative frames. As a result, the model becomes better
equipped to handle complex motion patterns and exhibit
improved performance during inference.

Time weight calculation: In the time dimension, the
motion of the selected joints in each frame is initially calculated
to assess how much movement occurs between consecutive
frames. This motion magnitude is determined by computing
the positional change of each joint between the current frame
t and the previous frame t - 1. The displacement is measured
using the Euclidean distance between the joint positions at
these two time points. To account for the overall temporal
continuity of the motion sequence and ensure consistency, the
motion amplitude of each frame is then normalised across the
entire sequence.

The normalisation process ensures that the motion
amplitudes are scaled in a way that reflects their relative
significance across the entire sequence, allowing for a fair
comparison between frames. This normalised value is used
to calculate a temporal weight for each frame, denoted as wt,
which quantifies the importance of each frame in the training
process.

Frames with larger motion amplitudes, signifying more
significant or dynamic movement, are assigned higher
temporal weights. These frames are considered more
important for training, as they are likely to contain crucial
information about the motion. On the other hand, frames with
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smaller motion amplitudes, indicating minimal movement,
are assigned lower weights. This differential weighting
mechanism ensures that the model places more emphasis on
the frames that contribute more significantly to the overall
motion sequence.

The formula for calculating the time weight is:

z nes ‘]t,n -J

2

t-1,n

RIS S5 Y EREE R .
e Srepresents the set of selected joints.

 J.denotes the position of the nth joint at time ¢.

e TheEuclidean norm || - || measures the displacement of

each joint between consecutive frames.
e Tis the total number of frames in the sequence.

By using this temporal weight calculation, the model is
guided to focus more on the frames that carry significant
motion information, thus optimising the training process to
capture the most critical dynamic features of the motion.

Construction and application of masking matrix: Once
the time weights are calculated for each frame, the next step
is to construct the masking matrix. The masking matrix is
a binary matrix that indicates which frames in the motion
sequence should be masked. Using the time weights as a basis,
we randomly select a certain percentage of time frames to
be masked during each training iteration. The proportion of
frames selected for masking is determined according to their
respective time weights: frames with higher motionamplitudes
(i.e., more critical moments) will have higher probabilities of
being selected for retaining in the mask sequence, ensuring
that more significant moments are retained.

The construction process of the mask matrix involves
several steps:

e First, initialize a matrix with all values set to false,
indicating that initially, all joint mask states are set to
False.

e Selection of Frames to be retained: Based on the time
weights, a certain percentage of frames are selected for
retaining. These frames correspond to moments with
higher motion intensity, as indicated by their time
weight.

e Application of retain: Apply the retained to the
selected frames by setting the retained values of the
corresponding joints to True at the designated time
points. The retained positions for these frames are
concentrated in regions where joint movement is
significant and temporally important, ensuring the
preservation of critical motion information.

By constructing the mask matrix in this way, the model is
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guided to focus its learning efforts on the most important time
moments of the motion. This ensures that sufficient semantic
information about the motion is preserved, particularly for
the high-intensity motion moments, while less important or
static moments will receive less attention. As a result, the
model learns to generate more realistic and dynamic human
motion, with improved accuracy and coherence in its output.

Theoretical connection and cognitive motivation

The proposed Dynamic Masking Strategy (DMS) is not only
an effective technique for improving model generalization
but also aligns conceptually with human motion perception
and attention mechanisms. Studies in cognitive science
indicate that humans tend to focus attention on body parts
or time segments with large motion amplitudes, significant
velocity changes, or event boundaries, as these regions carry
higher informational value for motion understanding and
prediction. By computing per-joint motion amplitudes and
frame-wise dynamic variations, DMS automatically identifies
and prioritizes these highly informative spatiotemporal
regions during training. This design can be regarded as a
computational analogue of human attention allocation, where
the model selectively emphasizes salient motion cues while
suppressingredundantorless informative ones. Consequently,
DMS enables the model to learn motion representations that
are more consistent with human perceptual focus, enhancing
both semantic coherence and naturalness of the generated
motion. In this sense, the proposed strategy not only improves
performance empirically but also provides a solid theoretical
grounding inspired by human perceptual and predictive
coding mechanisms.

Experiments

Dataset and evaluation methods

In this study, we utilise the HumanML3D dataset for the
text-based motion generation task. The HumanML3D dataset
[10] contains 14,616 unique motion capture data samples
sourced from the AMASS [49] and HumanAct12 [10] datasets,
along with 44,970 corresponding text descriptions. This
dataset provides extensive human motion data, making it
highly suitable for evaluating the effectiveness of text-based
motion generation models.

We adopt the evaluation framework proposed by Guo,
et al. [50] to comprehensively assess the generated motion
sequences using multiple metrics. First, the Fréchet Inception
Distance (FID) is used to evaluate the naturalness and fidelity
of the generated motions by measuring the difference between
the generated and true distributions in the feature space of a
pre-trained model. A lower FID value indicates higher quality
in the generated motions.

Next, R-Precision is employed to assess the relevance of
the generated motion sequences to the corresponding text
descriptions. Specifically, the relevance of a motion sequence
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is measured against 32 textual descriptions, one of which is the
true description, and the other 31 are random. The accuracy
is evaluated based on the first 3 matches by calculating the
Euclidean distance between the motion embedding and the
textual description.

Additionally, we use Diversity to measure the variation in
the generated motions. Diversity is quantified by calculating
the average cumulative difference between randomly paired
generated sequences in the test set.

To evaluate control accuracy, we introduce several
control performance metrics. These include trajectory error,
location error, and mean error, which measure the 3D control
accuracy of the controlled joint locations at keyframes.
Trajectory error indicates the percentage of keyframe joint
positions deviating from a set trajectory threshold. Location
error measures the percentage of keyframe locations that fall
outside a given distance constraint. Mean error calculates the
average Euclidean distance between a joint’s position and the
corresponding control trajectory at each keyframe.

During evaluation, all models were trained to generate
196-frame motion sequences at five keyframe density levels:
1, 2, 5, 49 (25% density), and 196 (100% density). The time
step of the keyframes was randomly sampled, and all models
were provided with real trajectories as spatial control signals
during both training and evaluation. We report the average
performance across all density levels. For training, we
followed the warm-up procedure outlined in the OmniControl
article.

Comparison with other methods

We conducted a comprehensive comparison between our
proposed method and the OmniControl method, using data
from our replicated model. The results were analysed using
multiple evaluation metrics, and the comparison outcomes
are presented in the table. The metrics compared include FID
(Fréchet Inception Distance), R-precision (Top-3), Diversity,
Trajectory Error (Traj. Err.), Location Error (Loc. Err.), and
Average Error (Avg. Err.). For each metric, the performance is
shown separately based on different control joints.

As shown in Table 1, our method outperforms OmniControl
on most key metrics. Specifically, on the FID metric, our
method achieves a clear advantage with an average value
of 0.180, compared to 0.297 for OmniControl, indicating
significantly lower error in the quality of the generated
motions. Additionally, our method demonstrates more stable
performance in terms of Diversity, with a mean value of 9.529,
compared to 9.828 for OmniControl, and shows superior
performance across multiple control joints, suggesting that
our model maintains a higher level of diversity throughout the
generation process.

In terms of error-related metrics (Trajectory Error,
Location Error, and Average Error), our method generally
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Table 1: Comparison of quantitative results of our method with the current OmniControl method on the HumanML3D test set. Best scores are highlighted in bold.

Method Control R-precision Diversity Traj. Err. Loc. Err.

Real - 0.002 0.797 9.503 0.000 0.000 0.000
OmniControl Pelvis 0.323 0.691 9.854 0.078 0.013 0.064
Ours(On all) Pelvis 0.160 0.662 9.376 0.075 0.014 0.057
OmniControl Head 0.316 0.687 9.921 0.093 0.017 0.076
Ours(On all) Head 0.222 0.662 9.565 0.086 0.015 0.056
OmniControl Left Hand 0.264 0.690 9.661 0.200 0.028 0.119
Ours(On all) Left Hand 0.199 0.678 9.432 0.105 0.021 0.060
OmniControl Right Hand 0.264 0.690 9.661 0.200 0.028 0.119
Ours(On all) Right Hand 0.204 0.685 9.399 0.067 0.012 0.054
OmniControl Left Foot 0.292 0.689 9.855 0.123 0.017 0.062
Ours(On all) Left Foot 0.136 0.652 9.741 0.099 0.015 0.070
OmniControl Right Foot 0.307 0.693 9.901 0.143 0.019 0.065
Ours(On all) Right Foot 0.161 0.663 9.658 0.101 0.016 0.070
OmniControl Average 0.297 0.691 9.828 0.139 0.019 0.083
Ours(On all) Average 0.180 0.667 9.529 0.089 0.015 0.061

performs better. For instance, the mean trajectory error is
0.089 compared to 0.139 for OmniControl; the mean location
error is 0.015, notably lower than 0.019 for OmniControl; and
the mean error is 0.061, compared to 0.083 for OmniControl,
indicating that our method generates more accurate results.

In summary, our method demonstrates significant
advantages in FID, diversity, and error-related metrics,
particularly in terms of generation quality and error control.
This suggests that our proposed model not only maintains
diversity and stability but also produces more accurate,
high-quality results, thus more effectively simulating and
representing human motion.

Ablation experiments

Removal of motion magnitude-based joint masks: To
further validate the effectiveness of our proposed dynamic
masking strategy based on motion amplitude, we conducted
an ablation experiment by removing the motion amplitude-
based joint mask. In this experiment, the dynamic masks based
on motion amplitude were removed, and only the standard
global masks were used for comparative analysis.

The results of the ablation experiment are shown in
Table 2. From the table, it is evident that removing the motion
amplitude-based joint mask leads to a decrease in the model’s
overall performance, as reflected in the trajectory error (Traj.
Err.), location error (Loc. Err.), and average error (Avg. Err.).

In terms of trajectory error, our method achieves a mean
value of 0.089, while the error after removing the joint mask
increases to 0.097, indicating an approximate 9.0% increase
in error. For location error, the mean value of our method
is 0.015, which is 6.3% lower than 0.016 after removing
the mask, demonstrating the positive impact of the motion
amplitude mask on accurate localization. Finally, the average
error in our method is 0.061, while after removing the mask,
it increases to 0.063, reflecting a 3.3% increase.

These initial results highlight the significant role of the
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motion amplitude-based joint mask in improving the accuracy
and stability of the model. The removal of this mask results
in degradation of the model’s performance across several key
metrics, particularly in trajectory error and location accuracy.
This suggests that our dynamic masking strategy effectively
enhances generation quality and improves the model’s
accuracy in the motion generation task.

This ablation Study further confirms the crucial role
of motion amplitude-based joint masking in the motion
generation task, providing strong evidence for the effectiveness
of our proposed masking strategy.

Removal of time dimension masks: To further validate
the effectiveness of our proposed dynamic masking strategy
based on motion magnitude, we conducted an ablation
experiment by removing the time dimension mask. This
experiment compares the performance changes after
removing the time dimension mask, which involves excluding
the temporal magnitude information from the motion data.

Table 3 presents the experimental results. Our method
outperforms the strategy without the time dimension mask
across three key metrics: trajectory error (Traj. Err.), location
error (Loc. Err.), and average error (Avg. Err.). With the
removal of the time dimension mask, the trajectory error
increases from 0.089 to 0.100, the location error rises from
0.015 to 0.016, and the average error increases from 0.061
to 0.063. These results indicate that the inclusion of the time

Table 2: Ablation Study to Remove the Effect of Joint Masking Based on Motion
Amplitude.

. Traj.Err.  Loc.err.  Avg.err.
Method Joint | c0cm) L(50cm) L(cm)
Ours Average 0.089 0.015 0.061
‘ Removing Joint Dimension Mask = Average 0.097 0.016 0.063

Table 3: Ablation study of the effect of removing time dimension masks.

. Traj.err. Loc.err. | Avg.err.
Method Joint | 50cm) L(50em) L(cm)
Ours Average 0.089 0.015 0.061
‘ Removing Time Dimension Mask | Average 0.100 0.016 0.063

www.artificialintelligencepub.com m



Dynamic Masking Strategy: An Effective Approach to Enhancing Accurate Human Motion Generation

dimension mask is effective in reducing errors during the
motion generation process, particularly in enhancing the
accuracy of the trajectory and location.

These findings clearly demonstrate the effectiveness of our
dynamic masking strategy that adjusts the mask based on both
motion amplitude and temporal characteristics. Removing the
time dimension mask leads to performance degradation, as
the model fails to adequately capture the temporal dynamics
of the motion. Therefore, retaining the temporal dimension
mask s crucial for enhancing the model’s ability to understand
and generate movements.

This ablation experiment further underscores the
important role of the time dimension mask in improving
model robustness and generation accuracy, providing strong
evidence for the effectiveness of our proposed masking
strategy.

Comparison of masking strategies: In this section, we
further validate the effectiveness of our proposed strategy,
which assigns higher masking probabilities to regions with
smaller motion amplitudes, through two ablation experiments.
The two experiments are: 1) higher masking probabilities in
regions with large motion amplitudes, and 2) higher masking
probabilities in regions with medium motion amplitudes. We
compare the results of these experiments with our proposed
method to analyse the impact of the masking strategy on
model performance.

Table 4 presents the results of these experiments. As
shown in the table, the model errors exhibit varying degrees
of change. Compared to our method, the strategy of assigning
higher masking probabilities to regions with larger motion
amplitudes leads to an increase in trajectory error (Traj.
Err.) from 0.089 to 0.113, which represents an increase of
approximately 26.9%. Similarly, location error (Loc. Err.)
increased from 0.015 to 0.018, a 20.0% increase.

For the strategy with higher masking probabilities in
regions with moderate motion amplitudes, the trajectory
error is 0.114, and the location error is 0.020, representing
increases of about 28.1% and 33.3%, respectively, compared
to our method. However, the average error (Avg. Err.) shows
less variation across the three methods, with values of 0.061,
0.070, and 0.070, respectively.

These results demonstrate that when the masking
probability is higher in regions with larger or medium motion

Table 4: Comparison of the results of the ablation experiments with higher masking
probability in large and moderate motion amplitude regions, respectively.
. Trai. Err. = Loc.Err. = Avg. err.
Method Joint | coem) L (50cm) L (50 cm)
Ours Average 0.089 0.015 0.061
Higher masking in lager amplitude | Average 0.113 0.018 0.070
Higer masking in moderate Average | 0.114 0.020 0.070
amplitude
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amplitudes, the model’s error increases. Compared to our
proposed strategy, which assigns higher probabilities to
regions with smaller motion amplitudes, the use of larger or
medium motion amplitude regions for masking negatively
impacts the generation accuracy. This further validates the
effectiveness of our dynamic masking strategy based on
motion amplitude in improving both the quality and accuracy
of generation.

Potential applications and future directions

The enhanced accuracy and stability achieved by the
Dynamic Masking Strategy suggest its broad applicability
across multiple domains:

Virtual Human Animation and Film Production - DMS can
generate more natural and precise human motions, reducing
manual correction efforts in digital character animation and
motion completion tasks.

Immersive Interaction and Virtual/Augmented Reality
(VR/AR) - By improving the realism of generated motions,
DMS can enhance the responsiveness and immersion of virtual
agents in real-time interactive environments.

Intelligent Motion Synthesis and Robotics - The attention-
guided masking of key joints enables better coordination
and adaptability in robotic motion planning and biomimetic
control.

Action Understanding and Behavior Analysis - The
masking and attention mechanism introduced in DMS can
also benefit recognition and prediction tasks by encouraging
models to focus on the most discriminative spatiotemporal
features. Overall, DMS not only advances human motion
generation but also offers a promising foundation for future
research in multimodal interaction, digital humans, and
intelligent robotic systems.

Conclusion

This paper proposesadynamicmaskingstrategy (DMS) that
integrates both motion amplitude and the time dimension. The
method introduces a motion amplitude computation module
and a dynamic masking allocation mechanism, enhancing the
model’s ability to adaptively adjust joint motion amplitude and
temporal characteristics in human motion generation. This
approach effectively overcomes the limitations of traditional
methods in generating complex dynamic motions.

The experimental results validate the effectiveness of the
proposed method, demonstrating a significant reduction in
generation error, improved motion accuracy, and enhanced
model performance in handling dynamic motion features.
This method provides a novel research direction for motion
generation tasks, with practical significance in improving the
accuracy and realism of motion generation.
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