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Abstract

Human motion generation is a pivotal task in the fi eld of data generation, with 
trajectory-guided methods emerging as a prominent approach due to their ability 
to provide precise control over motion outcomes. However, achieving a balance 
between motion naturalness and trajectory accuracy remains a signifi cant 
challenge. In this paper, we present a novel method, Trajectory-Aware Motion 
Generator (TAMG) that optimally addresses this challenge. TAMG integrates third-
order dynamic features, namely position, velocity, and acceleration, to enhance 
the naturalness of generated motions while maintaining precise trajectory control. 
We propose a multimodal feature fusion strategy that combines biomechanical 
features to ensure accurate motion representation, alongside a sparse sampling 
strategy based on motion importance distribution to focus on key phases of joint 
motion. The effectiveness of TAMG is validated through extensive experiments, which 
demonstrate its superior performance in both trajectory accuracy and motion 
quality compared to existing methods. This approach offers a simple, effective 
solution for interactive motion generation tasks, advancing the state of the art in 
trajectory-guided motion generation.

masking modules. For instance, MDM [9] improves the model’s 
generalization by randomly masking all spatio-temporal 
units. Omnicontrol [10] masks features in frames lacking valid 
control signals, enabling the model to concentrate on valid 
signals, ensuring motion generation is consistent with control 
instructions. However, in practical applications, problems 
persist, such as motions deviating from preset trajectories or 
violating physical laws. This is primarily due to the simplistic 
random masking strategy that excessively focuses on joint 
trajectories, neglecting the kinematic dynamics of real motion. 
This limitation results in insufϐicient naturalness in generated 
motions. Therefore, ensuring both trajectory accuracy and 
motion naturalness remains a major challenge in trajectory-
guided motion generation.

To address this, we propose the Trajectory-Aware 
Motion Generator (TAMG), a model designed to balance 

1. Introduction
Human motion generation is a signiϐicant ϐield within 

data generation, with trajectory-guided motion generation 
emerging as a prominent research focus due to its precise 
control over results. This method has broad application in 
areas such as virtual character animation [1-4] and intelligent 
human-computer interaction [5-8]. By integrating spatial 
trajectory constraints and behavioral semantic instructions, 
this approach generates complex motions that adhere to both 
trajectory limits and behavioral semantics.

In motion generation models, the masking mechanism is 
crucial: it promotes data diversity, mitigates overϐitting, and 
improves the model’s robustness. As a key component of the 
training process, the masking strategy signiϐicantly inϐluences 
the quality of generated results. Numerous models incorporate 
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trajectory accuracy with motion naturalness by co-optimizing 
biomechanical multimodal features. Speciϐically, we introduce 
a multimodal feature extraction module based on the third-
order kinetic properties (position, velocity, and acceleration) 
of joint motion. This module quantiϐies kinetic parameters 
of joint movements and uses a multimodal feature fusion 
mechanism to combine the extracted features with predeϐined 
weights. Additionally, we apply a sparse sampling strategy 
based on motion importance distribution to accurately mask 
critical motion phases. This method enhances the naturalness 
of generated motions while maintaining sub-centimeter 
trajectory accuracy with minimal computational overhead.

We validate the effectiveness of TAMG through extensive 
experiments, optimizing the balance between trajectory 
accuracy and motion naturalness. This approach successfully 
reduces trajectory-guided motion offsets. Compared to 
existing methods, TAMG signiϐicantly improves generation 
quality and offers new insights for research in related areas.

In summary, the main contributions of this paper are:

1. We examine the coupling mechanism of multimodal 
motion features in trajectory-guided motion 
generation, highlighting its signiϐicance in interactive 
motion models through extensive experimentation.

2. We introduce TAMG, a straightforward yet effective 
motion generation method, combining multimodal 
feature fusion with sparse masking of critical motion 
phases. This method effectively balances trajectory 
constraints with biomechanical rationality and 
improves the coordination of generated motions.

3. We demonstrate the effectiveness of our approach 
through extensive experiments, achieving a 29.6% 
improvement in FID performance on the HumanML3D 
dataset.

2.Related work
2.1 Human motion generation

Text-to-motion generation tasks [11-16] aim to create 
realistic human motion sequences based on natural language 
descriptions. Early approaches primarily utilized Generative 
Adversarial Networks (GAN) [17-19] or Variational Auto-
Encoders (VAE) [20-22]. In recent years, diffusion models 
have gained prominence for multimodal motion generation 
tasks due to their powerful generative capabilities. For 
instance, MotionDiffuse [23], the ϐirst text-driven motion 
diffusion model, enhances multimodal representation through 
ϐine-grained part control. MDM [9] further strengthens 
language-driven control for generating complex motions, 
while TLControl [24] combines linguistic descriptions with 
trajectory signals, utilizing potential spatial decoupling to 
generate high-ϐidelity motions. For trajectory control, GMD 
[25] propagates trajectory signals to neighboring nodes by 

introducing simple spatial constraints, while OmniControl 
[10] incorporates multi-joint spatial constraints for better 
coordination. MotionLCM [26] combines latent space control 
with ControlNet [27] to achieve efϐicient trajectory control.

Diffusion-based generation methods [28-33], renowned 
for their robust generative abilities and diversity, have been 
widely adopted for multimodal motion generation tasks. 
For example, MotionDiffuse [23], the ϐirst text-based motion 
diffusion model, enriches multimodal generation by enabling 
ϐine-grained control of body parts. MDM [9] enhances 
language-driven control, allowing users to generate complex 
actions using natural language. TLControl [24] integrates 
language descriptions with trajectory signals, generating 
high-ϐidelity motions through latent space decoupling. 
However, these methods often fall short in terms of control 
when actions involve signiϐicant dynamic changes or when 
multimodal input signals conϐlict. Moreover, the modeling of 
dependencies between body keypoints in trajectory-guided 
generation tasks remains insufϐiciently detailed. These 
models generally assume that the trajectory uniformly guides 
all keypoints, which can lead to conϐlicts between local actions 
and global consistency.

2.2 Masking strategies and kinematic modeling

2.2.1 Masking strategies: Masking strategies are widely 
utilized in self-supervised learning for data representation 
tasks. MAE [34] introduced a large-scale mask reconstruction 
method to effectively learn transferable visual representations 
in the image domain. In the human motion domain, similar 
masking strategies have been applied to self-supervised 
representation learning [35] and motion prediction [36]. 
However, most existing strategies rely on uniformly 
randomized masks, overlooking the temporal dynamics and 
interjoint dependencies of human motion. This limitation can 
lead to a lack of naturalness in the generated motions during 
motion generation processes.

2.2.2 Kinematic modeling: Human motions are 
commonly represented as time series of joint rotations or 
3D joint positions. Biomechanical analysis by Winter [37] 
demonstrates that the naturalness of motion is primarily 
determined by the multimodal coupling of positional accuracy, 
velocity continuity, and acceleration smoothness. Several 
approaches have been proposed to incorporate physical laws 
to enhance naturalness. For example, PhysDiff [38] corrects 
global motion errors (such as penetration) using a physics 
simulator but neglects joint-level dynamic properties. Li, et 
al. [39] proposed a velocity/acceleration feature extraction 
method based on difference operators, which, while 
incorporating rich kinematic knowledge, is limited to short-
term prediction tasks. Recently, FinePhys [40] introduced a 
three-bias physics fusion framework based on Euler-Lagrange 
equations. Despite advancements in rigid-body dynamics 
modeling, this framework imposes global constraints that 
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hinder its ability to capture biomechanical coordination 
among joints and does not optimize synergistically with 
conditional injection architectures.

While existing trajectory-guided motion generation 
research has made notable progress in model architecture and 
trajectory control, current masking strategies [9,10,36,41,42] 
often fail to adequately model the intrinsic biomechanical 
properties of human motion, particularly the coupled effects 
of position, velocity, and acceleration dynamics. Meanwhile, 
related kinematic modeling studies focus either on global 
physical corrections, ignoring joint-level dynamics, or on 
kinetic features that are inadequately integrated into the core 
mechanisms (e.g., masking strategies) of generative models. 
These limitations hinder the effective synergy of trajectory 
accuracy and motion naturalness. To address these issues, 
we propose TAMG, a model designed to optimally balance 
trajectory accuracy and motion naturalness, providing a 
simple and effective solution for motion generation.

3. Method
3.1 Overview

In this paper, we propose the Trajectory-Aware Motion 
Generator (TAMG), which integrates multimodal feature 
fusion with sparse masking of key motion phases to address 
the challenge of balancing trajectory accuracy and motion 
naturalness in trajectory-guided motion generation. The 
proposed method achieves high-precision trajectory control 
and natural motion generation by incorporating the third-
order dynamic properties (position, velocity, and acceleration) 
of joint motion and optimizing the masking strategy through 
multimodal biomechanics features. The model architecture is 
illustrated in Figure 1. Our approach consists of the following 
steps:

1. Multimodal feature extraction for joint motion: We 
design a multimodal feature extraction module based 
on three biomechanical features (position, velocity, 
acceleration) to quantify the kinematic parameters of 
joint motion.

2. Multimodal feature fusion and importance 
calculation: We compute a multimodal importance 
measure for each moment by weighting and fusing 
the features from different modalities with predeϐined 
weights.

3. Sparse masking strategy based on importance 
distribution: Using the computed multimodal 
importance, we apply a sparse sampling masking 
strategy to accurately control the key phases of 
joint motions, enhancing both the naturalness of the 
generated motions and trajectory accuracy.

3.2 Multimodal masking strategy

The core of our multimodal masking strategy lies in 
modeling the third-order dynamics of the joint motions and 
generating sparse masks of the key motion phases through 
weighted fusion. In the speciϐic implementation, the velocity 
and acceleration of the joints are ϐirst computed to extract the 
motion features of each joint in the time dimension. These 
features are combined with positional features to generate 
multimodal joint motion information.

3.2.1 Feature extraction: Given the input joint motion 
sequence J ∈ RT×N×3 (T denotes the number of time frames, 
N the number of joints, and 3 the 3D coordinates), we ϐirst 
extract third-order dynamic features:

Position feature: Directly uses the original joint 

Figure 1: Overview of TAMG.
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coordinates Pt = Jt, representing static spatial position.

Velocity feature: Computes joint motion velocity through 
ϐirst-order differentiation:

1 2 ,  1

0                , t = 1
t tJ J t

vt 
   


                     (1)

Acceleration feature: Computed based on second-order 
differentiation of velocity:

1 2 ,  2
 

0              , t  2
t t

t

v v t
a 

   


                         (2)

This third-order feature extraction is based on 
biomechanical principles: motion naturalness is essentially 
determined by the coupled effects of position accuracy, 
velocity continuity, and acceleration smoothness. The velocity 
feature quantiϐies the instantaneous rate of motion change, 
while the acceleration feature reveals the smooth transition 
characteristics of motion, together forming the dynamic basis 
of motion ϐluency.

3.2.2 Materiality calculation: We calculate the motion 
importance for each frame based on the third-order dynamic 
characteristics (position, velocity, acceleration) of joints. 
Speciϐically, the motion importance is computed through 
deviation from the mean:

2t tI P P                      (3)

Where P is the mean of all joint position data, and ∥•∥
2 

denotes the Euclidean norm.

We designed several different sampling strategies to 
evaluate their impact on generation results (see ablation 
study in Sec 4.4.1).

1. Gaussian ϐiltering enhancement: Enhances 
Gaussian smoothing of motion importance to better capture 
details of motion changes.


2

 Gaussian Filter ,t tI P P                      (4)

where σ is the standard deviation of the Gaussian ϐilter, 
typically min5,

5
T  


, ensuring a smoothing effect.

2. Peak focusing: Emphasizes motion peaks by 
amplifying joint movements with signiϐicant changes to 
increase sampling probability at key motion moments:

2

2
 t tI P P                      (5)

Squaring the motion deviation emphasizes joint 
movements with larger changes.

3. Temporal smoothing: Enhances temporal 
continuity by computing temporal differences to improve 
motion smoothness and reduce short-term ϐluctuations.

1 2t t tI P P                       (6)

Computing motion differences between adjacent frames 

focuses on the smoothness of continuous motion.

3.2.3 Fusion sampling: We perform weighted fusion 
of position, velocity, and acceleration motion importance 
to obtain a comprehensive importance distribution. This 
distribution reϐlects the inϐluence of motion features at 
different periods and joints on generated motions. Let It

pos, 
It

vel, and It
acc denote position, velocity, and acceleration motion 

importance, respectively. The total motion importance is:

It = ωpos · It
pos + ωvel · It

vel + ωacc · It
acc                  (7)

where ωpos, ωvel, and ωacc are, respectively, weight 
parameters for position, velocity, and acceleration, satisfying

ωpos + ωvel + ωacc = 1                     (8)

Figure 2 shows the motion importance of a randomly 
selected dataset. Figure 2a illustrates the calculated 
importance of position, velocity, and acceleration, and Figure 
2b shows the importance of fusion versus them. Sec 4.4.2 
and Sec 4.4.3 discuss the impact of different parameters on 
generation results.

For each time t, we determine whether to sample that 
frame based on the computed motion importance It. The 
sampling probability pt is proportional to it:

1

t
T

tt

Ipt
I




                      (9)

where
1

T
tt

I
 is the total importance across all time steps 

t, used to normalize the sampling probability for each frame. 
We sample a new frame sequence from all frames according 
to the probability pt.

3.3 Training strategy

During the training process, we introduced a random 
masking strategy to improve the generalization ability of the 
model. In the application of the masking strategy, the model 
ϐirst normalizes the motion data of each frame to ensure that 
the motion data of different joints are compared at the same 
scale. Then, the joints are selected and masks are applied 
through a multimodal masking strategy to ensure that the 
model can focus on the most important motion phases during 
the learning process.

During the training process, we also used a random 
selection of joints for masking to simulate the uncertainty in 
the real scenario. By properly masking the joints, the model 
can avoid over-ϐitting and generate more natural motion 
sequences while maintaining trajectory accuracy.

4. Experiment
We performed several experiments with human motion 

generation on the model to initially assess its performance 
in terms of balance trajectory accuracy and naturalness of 
motion. The experiments were conducted on the widely used 
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HumanML3D [43] motion dataset and included comparative 
analyses with existing benchmark methods. Additionally, we 
performed ablation studies to investigate the speciϐic impact 
of each module on the generation quality.

4.1 Datasets

We selected HumanML3D [43] as the dataset for our 
experiments to ensure that the model is evaluated across 
various motion scenarios. HumanML3D contains 14,646 
motion sequences extracted from the AMASS [44] and 
HumanAct12 [45] datasets, each with accompanying textual 
annotations. It covers a broad range of human actions such 
as daily activities (e.g., ’walking’, ’jumping’), sports (e.g., 
’swimming’, ’playing golf’), acrobatics (e.g., ’cartwheel’), and 
artistry (e.g., ’dancing’). HumanML3D data follows the SMPL 
skeleton structure with 22 joints. In experiments, we consider 
the pelvis, left foot, right foot, head, left wrist, and right wrist, 
given their common usage in interactions with objects and the 
surrounding scene.

4.2 Evaluation metrics

We adopt the evaluation protocol from [43]. We use three 
main metrics, Frechet Inception Distance (FID), R-Precision, 
and Diversity, to assess the realism and diversity of the 
generated motions. FID measures the quality of the generated 
motions by calculating the distance between the generated and 
real distributions in a pre-trained feature space. R-Precision 
evaluates the alignment between the generated motions and 
the textual descriptions by matching each generated motion 
sequence with 32 text descriptions (1 correct description 
and 31 random). The Euclidean distance between motion and 
text embeddings is computed, and accuracy is reported based 
on the top-3 matches. Diversity measures the variability in 
generated motions by randomly pairing sequences in the 
test set and calculating the average cumulative difference 
within each pair. To evaluate the controlling performance, 
following [25], we report the foot skating ratio as a proxy for 

the incoherence between trajectory and human motion and 
physical plausibility.

Additionally, to quantify the performance of the model 
in trajectory control, we adopted control accuracy metrics 
in calculating Trajectory Error, Location Error, and Average 
Error to evaluate the 3D joint position control in key frames. 
Trajectory Error measures the precision of trajectory tracking: 
if any joint position in a key frame deviates beyond a set 
threshold, the trajectory is considered unsuccessful. Location 
Error calculates the percentage of key frame positions that fail 
to fall within a speciϐied proximity. Average Error quantiϐies 
the overall control accuracy by computing the mean Euclidean 
distance between the joint positions in the generated motion 
and the given control trajectories at each key frame motion 
step.

4.3 Comparison with state-of-the-art methods

In Table 1, we compared the performance of our method 
with that of the Omni control method on multiple joints. The 
experimental results show that our method outperforms 
Omnicontrol on most of the evaluation metrics, especially 
on FID, R-precision, and motion diversity. Speciϐically, our 
method effectively improves the realism and accuracy of 
motions, while reducing the foot-slip ratio and signiϐicantly 
improving the physical plausibility. In addition, our method 
also performs well in terms of trajectory control and joint 
positioning accuracy, especially in terms of trajectory error 
and positioning error of the right foot and head, which are 
both greatly optimized. Overall, our method demonstrates 
enhanced capabilities in terms of generation quality, motion 
recognition, and physical reasonableness, validating the 
effectiveness of multi-feature fusion and dynamic weighting 
strategies to generate more natural and smooth motions 
while ensuring accuracy.

4.4 Ablation study

We conducted several ablation experiments on 

( a ) The motion importance. ( b ) The fusion importance.  

Figure 2: Examples of the motion importance. We randomly selected a dataset, computed its motion signifi cance, and visualized it.
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HumanML3D [43] to verify the effectiveness of our model 
design choices.

4.4.1 Effect of different sampling strategies: In order 
to evaluate the impact of different sampling strategies on 
the generation results, we designed a series of ablation 
experiments to observe their performance in motion 
generation by varying the details of the sampling strategies.

In Table 2, we present a detailed comparison of the 
different variants of the sampling strategy to verify their 
effectiveness in terms of generation quality. Speciϐically, 
base (ϐirst row) employs only bias computation; Gaussian-3 
(second row) uses a Gaussian ϐilter with a standard deviation 
of 3; Gaussian-5 (third row) employs a Gaussian ϐilter with a 
standard deviation of 5; Peak (fourth row) emphasizes joint 
motion variations by amplifying motion peaks; and Temporal 
(ϐifth row) enhances temporal smoothing by calculating the 
motion differences of neighboring frames.

In FID and control accuracy (Traj. err., Loc. err.) and 
other metrics in the experiments, Gaussian ϐiltering (σ = 
3) signiϐicantly reduces the FID value and the local error, 
indicating that moderate smoothing can effectively improve 
the ϐidelity of details. However, when the standard deviation 
was increased to 5, excessive smoothing of the Gaussian 
ϐilter led to a signiϐicant deterioration of the FID values 
and produced large trajectory distortions, suggesting that 
excessive smoothing may lead to loss of motion details. The 
peak focusing strategy performs well in R-precision and Foot 
skating, but it is also accompanied by an increase in trajectory 

error, reϐlecting the limitations of this strategy in modelling 
continuous motion. In contrast, the temporal continuity 
enhancement strategy shows good overall performance on 
all evaluation metrics. These experimental results suggest 
that the choice of sampling strategy must be weighed against 
the task requirements: Gaussian ϐiltering is suitable for high-
ϐidelity scenes, peak focusing excels at capturing key frames, 
and temporal continuity. 

The enhancement strategy has the most signiϐicant 
advantage in terms of overall generation quality. This further 
validates the critical impact of multi-scale motion feature 
modeling on generation quality.

4.4.2 Effect of different dynamic features: To evaluate 
the importance of position, velocity, and acceleration features 
in motion generation, we set up multiple distinct models and 
experimentally compared the impact of each feature on the 
generated results.

In Table 3, we systematically evaluate the impact of 
different dynamic features on the quality of generated 
motion by comparing models utilizing the full set of dynamic 
features against models employing only a single feature. 
The experimental results show that when relying only on a 
single feature, the FID values deteriorate signiϐicantly when 
using pure position features (second row), although the 
trajectory error performs moderately well, suggesting that 
the spatial localization features need to be compensated by 
the velocity and acceleration features during the generation 
process. Speciϐically, the pure position weights can achieve 

Table 1: Quantitative results of comparison with state-of-the-art methods on.
HumanML3D Test Set Results.

Method Joint FID ↓ R-precision ↑(Top-3) Diversity → Foot-skating ratio ↓ Traj. err. ↓ (50 cm) Loc. err. ↓ (50 cm) Avg. err. ↓
real – 0.002 0.797 9.503 0.000 0.000 0.000 0.000

Omnicontrol Pelvis 0.323 0.691 9.854 0.0431 0.0781 0.0131 0.0635
Ours (on all) Pelvis 0.234 0.702 9.715 0.0594 0.0557 0.0096 0.0585
Omnicontrol Left foot 0.292 0.689 9.855 0.0538 0.1230 0.0166 0.0623
Ours (on all) Left foot 0.252 0.703 9.576 0.0628 0.0977 0.0124 0.0555
Omnicontrol Right foot 0.307 0.693 9.901 0.0518 0.1426 0.0191 0.0654
Ours (on all) Right foot 0.209 0.709 9.654 0.0645 0.1152 0.0153 0.0592
Omnicontrol Head 0.316 0.687 9.921 0.0414 0.0928 0.0126 0.0757
Ours (on all) Head 0.205 0.701 9.581 0.0605 0.0713 0.0100 0.0708
Omnicontrol Left wrist 0.264 0.69 9.661 0.0527 0.2002 0.0284 0.1187
Ours (on all) Left wrist 0.185 0.696 9.553 0.0586 0.1289 0.0148 0.0947
Omnicontrol Right wrist 0.277 0.693 9.775 0.0513 0.1953 0.0251 0.1141
Ours (on all) Right wrist 0.169 0.698 9.795 0.0601 0.1074 0.0146 0.0931
Omnicontrol Average 0.297 0.691 9.828 0.0490 0.1387 0.0192 0.0833
Ours (on all) Average 0.209 0.702 9.612 0.0610 0.0960 0.0128 0.0720

Table 2: Ablation study for different sampling strategies.
Method Joint FID ↓R-precision ↑ (Top-3) Diversity → Foot skating ratio ↓ Traj. err. (↓50 cm) ↓ Loc. err. (↓50 cm) ↓ Avg. err. ↓

Base Average 0.251 0.691 9.393 0.0570 0.1078 0.0148 0.0738
Guassian-3 Average 0.209 0.702 9.612 0.0610 0.0960 0.0128 0.0720
Guassian-5 Average 0.312 0.700 9.794 0.0558 0.1099 0.0134 0.0709

Peak Average 0.253 0.703 9.424 0.0522 0.1210 0.0171 0.0787
Temporal Average 0.248 0.706 9.891 0.0546 0.1135 0.0132 0.0752
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combinations. Under combinations with larger ωpos, although 
trajectory accuracy was outstanding, the naturalness of 
the motion decreased, manifested as higher Foot skating 
values. This indicates that position features signiϐicantly 
impact trajectory precision, but over-reliance on them 
leads to unnatural sliding and reduced ϐluidity. Conversely, 
combinations with higher ωvel values showed reduced Foot 
skating values and less sliding, though trajectory accuracy 
was slightly compromised in some cases.

When adjusting acceleration feature weights, increasing 
ωacc reduces foot skating and enhances physical plausibility. 
However, overemphasizing acceleration degrades overall 
performance, particularly in ϐine-grained motion details 
compared to balanced combinations.

In summary, weighted feature fusion plays a crucial role 
in motion generation. Appropriate weight combinations 
achieve a favourable balance between trajectory precision 
and naturalness, thereby enhancing the quality of generated 
actions.

Further optimization of experimental results indicates 
that when the weights of position, velocity, and acceleration 
features are relatively balanced, the generated motion 
maintains high-quality trajectory accuracy while possessing 
sufϐicient physical plausibility and naturalness. Therefore, the 
comprehensive utilization of these three features signiϐicantly 
enhances the effectiveness of action generation.

5. Conclusion
To address the challenge of balancing trajectory accuracy 

and motion naturalness, we propose the Trajectory-Aware 
Motion Generator (TAMG). By leveraging third-order 
dynamic features and an innovative multimodal masking 
strategy, our approach ensures both the naturalness and 
smoothness of the generated motion, while maintaining high-
precision trajectory control. We validate the effectiveness of 
the model through a comprehensive series of experiments, 
demonstrating that TAMG signiϐicantly outperforms existing 
methods in both trajectory accuracy and overall motion 
quality. Our results highlight the importance of integrating 

some performance in terms of trajectory accuracy, but the 
lack of velocity and acceleration supplementation makes the 
generated results lack naturalness and detail.

When using pure velocity features (third row), the model 
obtains the best R-precision; however, the Foot skating ratio 
also rises signiϐicantly, exposing the problem of transient 
motion instability. This suggests that velocity features are 
effective in enhancing motion coherence, but over-reliance on 
velocity features may lead to a lack of physical plausibility and 
unnatural sliding, especially at the joints.

For the case of using pure acceleration features (fourth 
row), despite the improvement of Foot skating, which 
reduces the sliding phenomenon in the movement, the overall 
performance is still not optimal and is relatively weak in other 
metrics. The single acceleration feature fails to adequately 
address the balance between trajectory accuracy and motion 
details, and thus has limitations in terms of generation quality.

4.4.3 Effect of different combinations of weights: In 
Section 4.4.2, we demonstrated the limitations of relying 
solely on a single kinematic feature for motion generation. 
To further explore how integrating position, velocity, and 
acceleration features can enhance generation quality, we 
designed models incorporating multiple feature fusions and 
experimentally evaluated the impact of different weight 
combinations on generated results. In our experiments, we 
independently adjusted the weights for position features 
(ωpos), velocity features (ωvel), and acceleration features (ωacc), 
comparing their contributions to the generated results.

Table 4 illustrates the impact of different feature fusion 
strategies on motion generation quality. Experimental results 
indicate that the full feature fusion model (i.e., balanced weights 
for position, velocity, and acceleration) achieves optimal 
outcomes in both naturalness and detail representation. 
This demonstrates that the effective integration of all three 
features compensates for the limitations of individual 
features, ensuring trajectory accuracy while enhancing action 
detail and naturalness.

We further analyzed the impact of different weight 

Table 3: Ablation study for different dynamic features.
Method Joint FID ↓R-precision ↑ (Top-3) Diversity → Foot skating ratio ↓ Traj. err. (↓50 cm) ↓ Loc. err. (↓50 cm)  Avg. err. ↓

Ours (on all) Average 0.253 0.703 9.424 0.0522 0.1210 0.0171 0.0787
only-pos Average 0.313 0.694 9.400 0.0572 0.1133 0.0147 0.0748
only-vel Average 0.254 0.706 9.478 0.0689 0.1146 0.0156 0.0759
only-acc Average 0.280 0.698 9.644 0.0516 0.1149 0.0162 0.0765

Table 4: Ablation study for different combinations of weights.  
ωpos ωvel ωacc Joint FID ↓ R-precision ↑(Top-3) Diversity → Foot-skating ratio ↓ Traj. err. ↓ (50 cm) Loc. err. ↓ (50 cm) Avg. err. ↓
0.5 0.3 0.2 Average

 
 

0.253 0.703 9.424 0.0522 0.1210 0.0171 0.0787
0.7 0.3 0 0.266 0.699 9.752 0.0535 0.1138 0.0156 0.0750

0.34 0.33 0.33 0.245 0.696 9.711 0.0429 0.1084 0.0140 0.0729
0.5 0.3 0.2 Average

 
0.209 0.702 9.612 0.0610 0.0960 0.0128 0.0720

0.3 0.5 0.2 0.251 0.694 9.447 0.0561 0.1078 0.0144 0.0737



Trajectory-Aware Motion Generation for Enhanced Naturalness in Interactive Applications

 www.artifi cialintelligencepub.com 092https://doi.org/10.29328/journal.jairi.1001010

multiple biomechanical features and offer new insights for 
future research in trajectory-guided motion synthesis.
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