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Abstract

Human motion generation is a pivotal task in the field of data generation, with
trajectory-guided methods emerging as a prominent approach due to their ability
to provide precise control over motion outcomes. However, achieving a balance
between motion naturalness and trajectory accuracy remains a significant
challenge. In this paper, we present a novel method, Trajectory-Aware Motion
Generator (TAMG) that optimally addresses this challenge. TAMG integrates third-
order dynamic features, namely position, velocity, and acceleration, to enhance
the naturalness of generated motions while maintaining precise trajectory control.
We propose a multimodal feature fusion strategy that combines biomechanical
features to ensure accurate motion representation, alongside a sparse sampling
strategy based on motion importance distribution to focus on key phases of joint
motion. The effectiveness of TAMG is validated through extensive experiments, which
demonstrate its superior performance in both trajectory accuracy and motion
quality compared to existing methods. This approach offers a simple, effective
solution for interactive motion generation tasks, advancing the state of the art in
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trajectory-guided motion generation.

1. Introduction

Human motion generation is a significant field within
data generation, with trajectory-guided motion generation
emerging as a prominent research focus due to its precise
control over results. This method has broad application in
areas such as virtual character animation [1-4] and intelligent
human-computer interaction [5-8]. By integrating spatial
trajectory constraints and behavioral semantic instructions,
this approach generates complex motions that adhere to both
trajectory limits and behavioral semantics.

In motion generation models, the masking mechanism is
crucial: it promotes data diversity, mitigates overfitting, and
improves the model’s robustness. As a key component of the
training process, the masking strategy significantly influences
the quality of generated results. Numerous models incorporate
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masking modules. For instance, MDM [9] improves the model’s
generalization by randomly masking all spatio-temporal
units. Omnicontrol [10] masks features in frames lacking valid
control signals, enabling the model to concentrate on valid
signals, ensuring motion generation is consistent with control
instructions. However, in practical applications, problems
persist, such as motions deviating from preset trajectories or
violating physical laws. This is primarily due to the simplistic
random masking strategy that excessively focuses on joint
trajectories, neglecting the kinematic dynamics of real motion.
This limitation results in insufficient naturalness in generated
motions. Therefore, ensuring both trajectory accuracy and
motion naturalness remains a major challenge in trajectory-
guided motion generation.

To address this, we propose the Trajectory-Aware
Motion Generator (TAMG), a model designed to balance
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trajectory accuracy with motion naturalness by co-optimizing
biomechanical multimodal features. Specifically, we introduce
a multimodal feature extraction module based on the third-
order Kinetic properties (position, velocity, and acceleration)
of joint motion. This module quantifies kinetic parameters
of joint movements and uses a multimodal feature fusion
mechanism to combine the extracted features with predefined
weights. Additionally, we apply a sparse sampling strategy
based on motion importance distribution to accurately mask
critical motion phases. This method enhances the naturalness
of generated motions while maintaining sub-centimeter
trajectory accuracy with minimal computational overhead.

We validate the effectiveness of TAMG through extensive
experiments, optimizing the balance between trajectory
accuracy and motion naturalness. This approach successfully
reduces trajectory-guided motion offsets. Compared to
existing methods, TAMG significantly improves generation
quality and offers new insights for research in related areas.

In summary, the main contributions of this paper are:

1. We examine the coupling mechanism of multimodal
motion features in trajectory-guided motion
generation, highlighting its significance in interactive
motion models through extensive experimentation.

2. We introduce TAMG, a straightforward yet effective
motion generation method, combining multimodal
feature fusion with sparse masking of critical motion
phases. This method effectively balances trajectory
constraints with biomechanical rationality and
improves the coordination of generated motions.

3. We demonstrate the effectiveness of our approach
through extensive experiments, achieving a 29.6%
improvement in FID performance on the HumanML3D
dataset.

2.Related work

2.1Human motion generation

Text-to-motion generation tasks [11-16] aim to create
realistic human motion sequences based on natural language
descriptions. Early approaches primarily utilized Generative
Adversarial Networks (GAN) [17-19] or Variational Auto-
Encoders (VAE) [20-22]. In recent years, diffusion models
have gained prominence for multimodal motion generation
tasks due to their powerful generative capabilities. For
instance, MotionDiffuse [23], the first text-driven motion
diffusion model, enhances multimodal representation through
fine-grained part control. MDM [9] further strengthens
language-driven control for generating complex motions,
while TLControl [24] combines linguistic descriptions with
trajectory signals, utilizing potential spatial decoupling to
generate high-fidelity motions. For trajectory control, GMD
[25] propagates trajectory signals to neighboring nodes by

https://doi.org/10.29328/journal.jairi.1001010

5,

introducing simple spatial constraints, while OmniControl
[10] incorporates multi-joint spatial constraints for better
coordination. MotionLCM [26] combines latent space control
with ControlNet [27] to achieve efficient trajectory control.

Diffusion-based generation methods [28-33], renowned
for their robust generative abilities and diversity, have been
widely adopted for multimodal motion generation tasks.
For example, MotionDiffuse [23], the first text-based motion
diffusion model, enriches multimodal generation by enabling
fine-grained control of body parts. MDM [9] enhances
language-driven control, allowing users to generate complex
actions using natural language. TLControl [24] integrates
language descriptions with trajectory signals, generating
high-fidelity motions through Ilatent space decoupling.
However, these methods often fall short in terms of control
when actions involve significant dynamic changes or when
multimodal input signals conflict. Moreover, the modeling of
dependencies between body keypoints in trajectory-guided
generation tasks remains insufficiently detailed. These
models generally assume that the trajectory uniformly guides
all keypoints, which can lead to conflicts between local actions
and global consistency.

2.2 Masking strategies and kinematic modeling

2.2.1 Masking strategies: Masking strategies are widely
utilized in self-supervised learning for data representation
tasks. MAE [34] introduced a large-scale mask reconstruction
method to effectively learn transferable visual representations
in the image domain. In the human motion domain, similar
masking strategies have been applied to self-supervised
representation learning [35] and motion prediction [36].
However, most existing strategies rely on uniformly
randomized masks, overlooking the temporal dynamics and
interjoint dependencies of human motion. This limitation can
lead to a lack of naturalness in the generated motions during
motion generation processes.

2.2.2 Kinematic modeling: Human motions are
commonly represented as time series of joint rotations or
3D joint positions. Biomechanical analysis by Winter [37]
demonstrates that the naturalness of motion is primarily
determined by the multimodal coupling of positional accuracy,
velocity continuity, and acceleration smoothness. Several
approaches have been proposed to incorporate physical laws
to enhance naturalness. For example, PhysDiff [38] corrects
global motion errors (such as penetration) using a physics
simulator but neglects joint-level dynamic properties. Li, et
al. [39] proposed a velocity/acceleration feature extraction
method based on difference operators, which, while
incorporating rich kinematic knowledge, is limited to short-
term prediction tasks. Recently, FinePhys [40] introduced a
three-bias physics fusion framework based on Euler-Lagrange
equations. Despite advancements in rigid-body dynamics
modeling, this framework imposes global constraints that
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hinder its ability to capture biomechanical coordination
among joints and does not optimize synergistically with
conditional injection architectures.

While existing trajectory-guided motion generation
research has made notable progress in model architecture and
trajectory control, current masking strategies [9,10,36,41,42]
often fail to adequately model the intrinsic biomechanical
properties of human motion, particularly the coupled effects
of position, velocity, and acceleration dynamics. Meanwhile,
related kinematic modeling studies focus either on global
physical corrections, ignoring joint-level dynamics, or on
kinetic features that are inadequately integrated into the core
mechanisms (e.g., masking strategies) of generative models.
These limitations hinder the effective synergy of trajectory
accuracy and motion naturalness. To address these issues,
we propose TAMG, a model designed to optimally balance
trajectory accuracy and motion naturalness, providing a
simple and effective solution for motion generation.

3. Method

3.10verview

In this paper, we propose the Trajectory-Aware Motion
Generator (TAMG), which integrates multimodal feature
fusion with sparse masking of key motion phases to address
the challenge of balancing trajectory accuracy and motion
naturalness in trajectory-guided motion generation. The
proposed method achieves high-precision trajectory control
and natural motion generation by incorporating the third-
order dynamic properties (position, velocity, and acceleration)
of joint motion and optimizing the masking strategy through
multimodal biomechanics features. The model architecture is
illustrated in Figure 1. Our approach consists of the following
steps:

5

1. Multimodal feature extraction for joint motion: We
design a multimodal feature extraction module based
on three biomechanical features (position, velocity,
acceleration) to quantify the kinematic parameters of
joint motion.

2. Multimodal feature fusion and importance
calculation: We compute a multimodal importance
measure for each moment by weighting and fusing
the features from different modalities with predefined
weights.

3. Sparse masking strategy based on importance
distribution: Using the computed multimodal
importance, we apply a sparse sampling masking
strategy to accurately control the key phases of
joint motions, enhancing both the naturalness of the
generated motions and trajectory accuracy.

3.2 Multimodal masking strategy

The core of our multimodal masking strategy lies in
modeling the third-order dynamics of the joint motions and
generating sparse masks of the key motion phases through
weighted fusion. In the specific implementation, the velocity
and acceleration of the joints are first computed to extract the
motion features of each joint in the time dimension. These
features are combined with positional features to generate
multimodal joint motion information.

3.2.1 Feature extraction: Given the input joint motion
sequence /] € R™¥3 (T denotes the number of time frames,
N the number of joints, and 3 the 3D coordinates), we first
extract third-order dynamic features:

Position feature: Directly uses the original joint

Text embedding

Control Signal Motion Masked motion
embedding embedding v
4 N | -
. Mask ...
H N
l—' . . Output
. .<_7 Importance
Multimodal feature extraction . embedding
H B ]

Mask matrix

e

Acceleration
embedding

Position
embedding
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Figure 1: Overview of TAMG.

Importance Calculation & Weighted Fusion
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coordinates P = ], representing static spatial position.

Velocity feature: Computes joint motion velocity through
first-order differentiation:

9c=3c],. t>1
vt = t t=1{l» 1
b »

Acceleration feature: Computed based on second-order
differentiation of velocity:

||Vt_vt—l||2’ t>2
= 2
i {0 <2 (2)

This third-order feature extraction is based on
biomechanical principles: motion naturalness is essentially
determined by the coupled effects of position accuracy,
velocity continuity, and acceleration smoothness. The velocity
feature quantifies the instantaneous rate of motion change,
while the acceleration feature reveals the smooth transition
characteristics of motion, together forming the dynamic basis
of motion fluency.

3.2.2 Materiality calculation: We calculate the motion
importance for each frame based on the third-order dynamic
characteristics (position, velocity, acceleration) of joints.
Specifically, the motion importance is computed through
deviation from the mean:

=R -P|, 3)

Where P is the mean of all joint position data, and "',
denotes the Euclidean norm.

We designed several different sampling strategies to
evaluate their impact on generation results (see ablation
study in Sec 4.4.1).

1. Gaussian filtering enhancement: Enhances
Gaussian smoothing of motion importance to better capture
details of motion changes.

I, = Gaussian Filter||P, - Fi’"2 ,0) (4)

where o is the standard deviation of the Gaussian filter,
typically & =min 5,Ij , ensuring a smoothing effect.
5

2. Peak focusing: Emphasizes motion peaks by
amplifying joint movements with significant changes to
increase sampling probability at key motion moments:

= [R-PL) (5)

Squaring the motion deviation emphasizes joint
movements with larger changes.
3. Temporal smoothing: Enhances temporal

continuity by computing temporal differences to improve
motion smoothness and reduce short-term fluctuations.

| =[R-R., (6)

Computing motion differences between adjacent frames
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focuses on the smoothness of continuous motion.

3.2.3 Fusion sampling: We perform weighted fusion
of position, velocity, and acceleration motion importance
to obtain a comprehensive importance distribution. This
distribution reflects the influence of motion features at
different periods and joints on generated motions. Let 1%,
ItV"I, and /““denote position, velocity, and acceleration motion
importance, respectively. The total motion importance is:

- . J pos . Jvel . Jacc
It wpos [t + wvel It + wacc [t (7)
where W O and w, . are, respectively, weight
parameters for position, velocity, and acceleration, satisfying
0w +w +w =1 (8)
pos vel acc

Figure 2 shows the motion importance of a randomly
selected dataset. Figure 2a illustrates the calculated
importance of position, velocity, and acceleration, and Figure
2b shows the importance of fusion versus them. Sec 4.4.2
and Sec 4.4.3 discuss the impact of different parameters on
generation results.

For each time t, we determine whether to sample that
frame based on the computed motion importance I. The
sampling probability p,is proportional to it:

pt= ZT‘ : (9)

t=1 't

where ZLI I, is the total importance across all time steps
t, used to normalize the sampling probability for each frame.
We sample a new frame sequence from all frames according
to the probability p..

3.3 Training strategy

During the training process, we introduced a random
masking strategy to improve the generalization ability of the
model. In the application of the masking strategy, the model
first normalizes the motion data of each frame to ensure that
the motion data of different joints are compared at the same
scale. Then, the joints are selected and masks are applied
through a multimodal masking strategy to ensure that the
model can focus on the most important motion phases during
the learning process.

During the training process, we also used a random
selection of joints for masking to simulate the uncertainty in
the real scenario. By properly masking the joints, the model
can avoid over-fitting and generate more natural motion
sequences while maintaining trajectory accuracy.

4. Experiment

We performed several experiments with human motion
generation on the model to initially assess its performance
in terms of balance trajectory accuracy and naturalness of
motion. The experiments were conducted on the widely used
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(a) The motion importance.

5,

Importance

— |_pos
et ]

— Iac
- _total |

(b) The fusion importance.

Figure 2: Examples of the motion importance. We randomly selected a dataset, computed its motion significance, and visualized it.

HumanML3D [43] motion dataset and included comparative
analyses with existing benchmark methods. Additionally, we
performed ablation studies to investigate the specific impact
of each module on the generation quality.

4.1 Datasets

We selected HumanML3D [43] as the dataset for our
experiments to ensure that the model is evaluated across
various motion scenarios. HumanML3D contains 14,646
motion sequences extracted from the AMASS [44] and
HumanAct12 [45] datasets, each with accompanying textual
annotations. It covers a broad range of human actions such
as daily activities (e.g., 'walking’, 'jumping’), sports (e.g.,
'swimming’, 'playing golf’), acrobatics (e.g., 'cartwheel’), and
artistry (e.g., 'dancing’). HumanML3D data follows the SMPL
skeleton structure with 22 joints. In experiments, we consider
the pelvis, left foot, right foot, head, left wrist, and right wrist,
given their common usage in interactions with objects and the
surrounding scene.

4.2 Evaluation metrics

We adopt the evaluation protocol from [43]. We use three
main metrics, Frechet Inception Distance (FID), R-Precision,
and Diversity, to assess the realism and diversity of the
generated motions. FID measures the quality of the generated
motions by calculating the distance between the generated and
real distributions in a pre-trained feature space. R-Precision
evaluates the alignment between the generated motions and
the textual descriptions by matching each generated motion
sequence with 32 text descriptions (1 correct description
and 31 random). The Euclidean distance between motion and
text embeddings is computed, and accuracy is reported based
on the top-3 matches. Diversity measures the variability in
generated motions by randomly pairing sequences in the
test set and calculating the average cumulative difference
within each pair. To evaluate the controlling performance,
following [25], we report the foot skating ratio as a proxy for
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the incoherence between trajectory and human motion and
physical plausibility.

Additionally, to quantify the performance of the model
in trajectory control, we adopted control accuracy metrics
in calculating Trajectory Error, Location Error, and Average
Error to evaluate the 3D joint position control in key frames.
Trajectory Error measures the precision of trajectory tracking:
if any joint position in a key frame deviates beyond a set
threshold, the trajectory is considered unsuccessful. Location
Error calculates the percentage of key frame positions that fail
to fall within a specified proximity. Average Error quantifies
the overall control accuracy by computing the mean Euclidean
distance between the joint positions in the generated motion
and the given control trajectories at each key frame motion
step.

4.3 Comparison with state-of-the-art methods

In Table 1, we compared the performance of our method
with that of the Omni control method on multiple joints. The
experimental results show that our method outperforms
Omnicontrol on most of the evaluation metrics, especially
on FID, R-precision, and motion diversity. Specifically, our
method effectively improves the realism and accuracy of
motions, while reducing the foot-slip ratio and significantly
improving the physical plausibility. In addition, our method
also performs well in terms of trajectory control and joint
positioning accuracy, especially in terms of trajectory error
and positioning error of the right foot and head, which are
both greatly optimized. Overall, our method demonstrates
enhanced capabilities in terms of generation quality, motion
recognition, and physical reasonableness, validating the
effectiveness of multi-feature fusion and dynamic weighting
strategies to generate more natural and smooth motions
while ensuring accuracy.

4.4 Ablation study

several ablation
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HumanML3D [43] to verify the effectiveness of our model
design choices.

4.4.1 Effect of different sampling strategies: In order
to evaluate the impact of different sampling strategies on
the generation results, we designed a series of ablation
experiments to observe their performance in motion
generation by varying the details of the sampling strategies.

In Table 2, we present a detailed comparison of the
different variants of the sampling strategy to verify their
effectiveness in terms of generation quality. Specifically,
base (first row) employs only bias computation; Gaussian-3
(second row) uses a Gaussian filter with a standard deviation
of 3; Gaussian-5 (third row) employs a Gaussian filter with a
standard deviation of 5; Peak (fourth row) emphasizes joint
motion variations by amplifying motion peaks; and Temporal
(fifth row) enhances temporal smoothing by calculating the
motion differences of neighboring frames.

In FID and control accuracy (Traj. err., Loc. err.) and
other metrics in the experiments, Gaussian filtering (¢ =
3) significantly reduces the FID value and the local error,
indicating that moderate smoothing can effectively improve
the fidelity of details. However, when the standard deviation
was increased to 5, excessive smoothing of the Gaussian
filter led to a significant deterioration of the FID values
and produced large trajectory distortions, suggesting that
excessive smoothing may lead to loss of motion details. The
peak focusing strategy performs well in R-precision and Foot
skating, but it is also accompanied by an increase in trajectory

error, reflecting the limitations of this strategy in modelling
continuous motion. In contrast, the temporal continuity
enhancement strategy shows good overall performance on
all evaluation metrics. These experimental results suggest
that the choice of sampling strategy must be weighed against
the task requirements: Gaussian filtering is suitable for high-
fidelity scenes, peak focusing excels at capturing key frames,
and temporal continuity.

The enhancement strategy has the most significant
advantage in terms of overall generation quality. This further
validates the critical impact of multi-scale motion feature
modeling on generation quality.

4.4.2 Effect of different dynamic features: To evaluate
the importance of position, velocity, and acceleration features
in motion generation, we set up multiple distinct models and
experimentally compared the impact of each feature on the
generated results.

In Table 3, we systematically evaluate the impact of
different dynamic features on the quality of generated
motion by comparing models utilizing the full set of dynamic
features against models employing only a single feature.
The experimental results show that when relying only on a
single feature, the FID values deteriorate significantly when
using pure position features (second row), although the
trajectory error performs moderately well, suggesting that
the spatial localization features need to be compensated by
the velocity and acceleration features during the generation
process. Specifically, the pure position weights can achieve

‘Table 1: Quantitative results of comparison with state-of-the-art methods on.

HumanML3D Test Set Results.

R-precision T(Top-3) Diversity —» Foot-skating ratio ! | Traj.err.! (50 cm) Loc.err.l(50cm)  Avg.err.l

real - 0.002 0.797 9.503 0.000 0.000 0.000 0.000
Omnicontrol Pelvis 0.323 0.691 9.854 0.0431 0.0781 0.0131 0.0635
Ours (on all) Pelvis 0.234 0.702 9.715 0.0594 0.0557 0.0096 0.0585
Omnicontrol Left foot 0.292 0.689 9.855 0.0538 0.1230 0.0166 0.0623
Ours (on all) Left foot 0.252 0.703 9.576 0.0628 0.0977 0.0124 0.0555
Omnicontrol Right foot 0.307 0.693 9.901 0.0518 0.1426 0.0191 0.0654
Ours (on all) Right foot 0.209 0.709 9.654 0.0645 0.1152 0.0153 0.0592
Omnicontrol Head 0.316 0.687 9.921 0.0414 0.0928 0.0126 0.0757
Ours (on all) Head 0.205 0.701 9.581 0.0605 0.0713 0.0100 0.0708
Omnicontrol Left wrist 0.264 0.69 9.661 0.0527 0.2002 0.0284 0.1187
Ours (on all) Left wrist 0.185 0.696 9.553 0.0586 0.1289 0.0148 0.0947
Omnicontrol Right wrist 0.277 0.693 9.775 0.0513 0.1953 0.0251 0.1141
Ours (on all) Right wrist 0.169 0.698 9.795 0.0601 0.1074 0.0146 0.0931
Omnicontrol Average 0.297 0.691 9.828 0.0490 0.1387 0.0192 0.0833
Ours (on all) Average 0.209 0.702 9.612 0.0610 0.0960 0.0128 0.0720

Table 2: Ablation study for different sampling strategies.

Method FID {R-precision Diversity | — Foot skating ratio | Traj. err. ({50 cm) | Loc.err.({50cm) @ ! Avg.err.!
Base Average 0.251 0.691 9.393 0.0570 0.1078 0.0148 0.0738
Guassian-3 Average 0.209 0.702 9.612 0.0610 0.0960 0.0128 0.0720
Guassian-5 Average 0.312 0.700 9.794 0.0558 0.1099 0.0134 0.0709
Peak Average 0.253 0.703 9.424 0.0522 0.1210 0.0171 0.0787
Temporal Average 0.248 0.706 9.891 0.0546 0.1135 0.0132 0.0752
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Table 3: Ablation study for different dynamic features.

Method FID {R-precision T (Top-3) Diversity - Foot skating ratio | | Traj. err. (150 cm) ! Loc. err. ({50 cm) Avg. err. !
Ours (on all) Average 0.253 0.703 9.424 0.0522 0.1210 0.0171 0.0787
only-pos Average 0.313 0.694 9.400 0.0572 0.1133 0.0147 0.0748
only-vel Average 0.254 0.706 9.478 0.0689 0.1146 0.0156 0.0759
only-acc Average 0.280 0.698 9.644 0.0516 0.1149 0.0162 0.0765

some performance in terms of trajectory accuracy, but the
lack of velocity and acceleration supplementation makes the
generated results lack naturalness and detail.

When using pure velocity features (third row), the model
obtains the best R-precision; however, the Foot skating ratio
also rises significantly, exposing the problem of transient
motion instability. This suggests that velocity features are
effective in enhancing motion coherence, but over-reliance on
velocity features may lead to a lack of physical plausibility and
unnatural sliding, especially at the joints.

For the case of using pure acceleration features (fourth
row), despite the improvement of Foot skating, which
reduces the sliding phenomenon in the movement, the overall
performance is still not optimal and is relatively weak in other
metrics. The single acceleration feature fails to adequately
address the balance between trajectory accuracy and motion
details, and thus has limitations in terms of generation quality.

4.4.3 Effect of different combinations of weights: In
Section 4.4.2, we demonstrated the limitations of relying
solely on a single kinematic feature for motion generation.
To further explore how integrating position, velocity, and
acceleration features can enhance generation quality, we
designed models incorporating multiple feature fusions and
experimentally evaluated the impact of different weight
combinations on generated results. In our experiments, we
independently adjusted the weights for position features
(wpos), velocity features (w, ), and acceleration features (w,_),
comparing their contributions to the generated results.

Table 4 illustrates the impact of different feature fusion
strategies on motion generation quality. Experimental results
indicate thatthe full feature fusion model (i.e., balanced weights
for position, velocity, and acceleration) achieves optimal
outcomes in both naturalness and detail representation.
This demonstrates that the effective integration of all three
features compensates for the limitations of individual
features, ensuring trajectory accuracy while enhancing action
detail and naturalness.

We further analyzed the impact of different weight

combinations. Under combinations with larger W, although
trajectory accuracy was outstanding, the naturalness of
the motion decreased, manifested as higher Foot skating
values. This indicates that position features significantly
impact trajectory precision, but over-reliance on them
leads to unnatural sliding and reduced fluidity. Conversely,
combinations with higher w ,values showed reduced Foot
skating values and less sliding, though trajectory accuracy
was slightly compromised in some cases.

When adjusting acceleration feature weights, increasing
w reduces foot skating and enhances physical plausibility.
acc
However, overemphasizing acceleration degrades overall
performance, particularly in fine-grained motion details
compared to balanced combinations.

In summary, weighted feature fusion plays a crucial role
in motion generation. Appropriate weight combinations
achieve a favourable balance between trajectory precision
and naturalness, thereby enhancing the quality of generated
actions.

Further optimization of experimental results indicates
that when the weights of position, velocity, and acceleration
features are relatively balanced, the generated motion
maintains high-quality trajectory accuracy while possessing
sufficient physical plausibility and naturalness. Therefore, the
comprehensive utilization of these three features significantly
enhances the effectiveness of action generation.

5. Conclusion

To address the challenge of balancing trajectory accuracy
and motion naturalness, we propose the Trajectory-Aware
Motion Generator (TAMG). By leveraging third-order
dynamic features and an innovative multimodal masking
strategy, our approach ensures both the naturalness and
smoothness of the generated motion, while maintaining high-
precision trajectory control. We validate the effectiveness of
the model through a comprehensive series of experiments,
demonstrating that TAMG significantly outperforms existing
methods in both trajectory accuracy and overall motion
quality. Our results highlight the importance of integrating

Table 4: Ablation study for different combinations of weights.

- FID! | R-precision T(Top-3) Diversity - |Foot-skating ratio ! Traj.err.! (50 cm) Loc.err.! (50 cm) Avg.err.l
0.5 0.3 0.2 Average 0.253 0.703 9.424 0.0522 0.1210 0.0171 0.0787
0.7 0.3 0 0.266 0.699 9.752 0.0535 0.1138 0.0156 0.0750
0.34 0.33 0.33 0.245 0.696 9.711 0.0429 0.1084 0.0140 0.0729
0.5 0.3 0.2 Average 0.209 0.702 9.612 0.0610 0.0960 0.0128 0.0720
0.3 0.5 0.2 0.251 0.694 9.447 0.0561 0.1078 0.0144 0.0737
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multiple biomechanical features and offer new insights for
future research in trajectory-guided motion synthesis.
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