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Abstract

The rising demand for long-range, low-power wireless communication in 
applications such as monitoring, smart metering, and wide-area sensor networks 
has emphasized the critical need for effi cient spectrum utilization in LoRaWAN (Long 
Range Wide Area. Network). In response to this challenge, this paper proposes a 
novel channel selection framework based on Hierarchical Discrete Pursuit Learning 
Automata (HDPA), aimed at enhancing the adaptability and reliability of LoRaWAN 
operations in dynamic and interference-prone environments. The HDPA framework 
capitalizes on the adaptive decision-making capabilities of Learning Automata 
(LA) to monitor and predict channel conditions in real time, enabling intelligent 
and sequential channel selection that maximizes transmission performance while 
reducing packet loss and co-channel interference. By integrating a hierarchical 
structure and discrete pursuit learning strategy, the proposed model achieves 
improved learning speed and accuracy in identifying optimal transmission channels 
from diverse frequency options. The methodology includes a detailed theoretical 
formulation of the HDPA algorithm and extensive simulations to evaluate its 
performance. Results demonstrate that HDPA outperforms Hierarchical Continuous 
Pursuit Automata (HCPA), particularly in convergence speed and selection accuracy.

large-scale IoT systems, a critical limitation like the lack of 
intelligent, adaptive, and context-aware channel selection 
mechanisms.

Furthermore, the traditional channel access scheme fails 
to incorporate feedback mechanisms that allow devices to 
learn past transmissions or adapt their strategies based 
on observed outcomes. This is especially problematic in 
stochastic environments, where channel quality ϐluctuates 
due to external interference, environmental changes. Without 
the ability to dynamically adjust to these variations, LoRaWAN 
networks remain vulnerable to congestion.

There is a pressing need for a lightweight, decentralized, 
and intelligent channel selection solution that can adapt 
its decisions in real time. Such a solution should be able to 
maximize successful transmission.

1. Introduction 
The proliferation of the Internet of Things (IoT) and the 

associated demand for ubiquitous, low-power, and long-range 
wireless communication has propelled the development and 
adoption of Long Range Wide Area Network (LoRaWAN) 
systems [1]. LoRaWAN offers a compelling framework for IoT. 

Applications due to its ability to provide wide-area 
coverage with minimal energy consumption [2]. However, 
as deployments expand, especially in urban and industrial 
environments with increasing device densities, maintaining 
high network performance becomes a signiϐicant challenge [3]. 
The core difϐiculty lies in effective radio channel selection amid 
dynamic, congested, and interference-prone environments. 

Despite the widespread deployment of LoRaWAN in 
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To address this, our research introduces a Learning 
Automata (LA)-based solution, specially the Hierarchical 
Pursuit Learning Automata (HDPA), as an optimal channel 
selection mechanism for LoRaWAN, Learning Automata, 
a class of Reinforcement learning algorithms, operate by 
interacting with a stochastic environment to identify the 
best actions through trial-error processes based on reward 
and penalties [5]. The HDPA model extends traditional LA by 
employing a hierarchical structure that allows for faster and 
more accurate convergence to the optimal channel, especially 
in multi-step, dynamic environments like LoRaWAN.

This study proposed the integration of HDPA into 
LoRaWAN as a predictive, self-adapting algorithm capable of 
identifying the most reliable communication channels based 
on ongoing transmission success rates. Unlike static models, 
HDPA continually updates its selection probabilities using 
environmental feedback, optimizing network performance 
through a structured decision-making framework. The 
learning mechanism evaluates multiple channels in parallel, 
dynamically adapting to network behavior and reducing the 
impact of interference, collisions, and congestion [6]. 

The objectives of this research are multifaceted: to critically 
review existing channel selection techniques in LoRaWAN and 
their limitations; to design and implement the HDPA model 
for LoRaWAN environments; and to evaluate the model’s 
performance against existing solutions such as Hierarchical 
Continuous Pursuit Automata (HCPA) through rigorous 
simulations [7]. We hypothesize that HDPA will demonstrate 
superior performance in terms of throughput, convergence 
speed, and decision-making accuracy. 

The proposed methodology combines theoretical 
modeling, algorithmic design, and simulation-based validation 
using MATLAB. The simulations are conϐigured with realistic 
network scenarios, channel characteristics, and iterative 
experiments to assess metrics like accuracy, standard 
deviation, and convergence time. 

Preliminary results afϐirm that HDPA signiϐicantly 
outperforms HCPA, especially under high-density and variable 
channel conditions. With a mean convergence iteration 
of approximately 6279.64 and an accuracy of 98.78%, 
HDPA proves to be a highly effective algorithm for channel 
classiϐication and selection in LoRaWAN. 

The main aim of this research is to design and evaluate the 
Hierarchical Discrete Pursuit Learning Automata (HDPA) as 
an adaptive channel selection mechanism in the LoRaWAN 
environment. The study explores how HDPA can learn from 
network feedback to enhance throughput, reduce interference, 
and outperform existing methods.

The remainder of this paper is organized as follows. 
Section 2 provides a detailed summary of the related work. 
Section 3 describes and analyzes the system model along with 

the channel selection problems. In Section 4, we introduce 
the Learning automata-based LoRaWAN channel access 
scheme. Section 5 presents extensive simulation results 
that demonstrate the advantages of using HDPA for channel 
selection. Finally, Section 6 concludes the paper. 

2. Related work 
Several studies have investigated the optimization of 

LoRaWAN-based IoT networks using machine learning 
and analytical approaches. In [8], the authors investigated 
SF prediction using supervised ML algorithms in a mobile 
LoRaWAN environment. They evaluated various classiϐiers, 
including k-Nearest Neighbors, Decision Trees, Random 
Forests, and Multinomial Logistic Regression using manually 
selected features such as RSSI and SNR, antenna height, 
distance to the gateway, and frequency. The study identiϐied 
RSSI and SNR as the most signiϐicant predictors, achieving 
around 65% accuracy. However, the model was limited by 
manual feature selection and a constrained urban dataset.  In 
the context of large-scale smart city deployments [9] employed 
ML models were employed to predict Estimated Signal Power 
(ESP) using data collected from over 30,000 smart water 
meters across Cyprus. Decision Trees and XGBoost classiϐiers 
were used to forecast ESP based on environmental and 
topographical features, to improve network planning and 
deployment efϐiciency. Although the models showed high 
predictive performance, the focus on ESP alone limits broader 
insights into other critical metrics like packet delivery ratio 
and throughput. 

Addressing coexistence challenges in Low-power Wide-
area Networks (LPWANs), [10] proposed an analytical 
interference model between LoRaWAN and Sigfox networks. 
The model accounted for parameters such as duty cycle and 
node density and was validated using SEAMCAT simulations. 
The concept of “protection distance” was introduced to 
minimize mutual interference. Despite its theoretical 
contributions, the model assumed uniform node distribution 
and ignored dynamic network characteristics such as adaptive 
SF. 

To improve transmission efϐiciency and data rates, [11] 
developed a resource allocation algorithm (LRA) for LoRa 
devices equipped with dual transceivers. The algorithm 
leveraged the quasi-orthogonality of different SFs to 
concurrently transmit data, effectively increasing the channel 
capacity. Evaluations showed signiϐicant improvements in 
transmission time and bit rate, particularly for large data 
transfers like image transmissions.  

Reinforcement Learning has also been explored for 
decentralized channel selection in dense LoRaWAN 
environments [12]. Implemented a lightweight Multi-armed 
Bandit (MAB) algorithm based on Tug-of-War (ToW) dynamics 
on actual LoRa hardware. Their approach demonstrated 
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superior convergence and channel allocation performance 
compared to traditional RL strategies like UBC1+Tuned and 
ε-greedy. However, the evaluation was limited to a small-scale 
indoor setup with restricted channel diversity. A subsequent 
study by the same authors [13] tested the MAB-based strategy 
in urban outdoors environments using Lazurite 920J devices. 
This follow–up algorithm’s compatibility with coexisting 
LPWANs like Sigfox. In more complex cognitive radio-
based IIoT applications, [14] introduced a dual Q- learning 
framework for proactive spectrum handoff. By jointly 
estimating channel availability and RSSI trends, the algorithm 
minimized latency and improved throughput in dynamic 
wireless environments.  At the MAC layer, slotted Aloha has 
been proposed as a potential enhancement over pure Aloha in 
LoRaWAN. [15] used simulations to evaluate the performance 
of slotted Aloha under different trafϐic conditions, reporting 
up to 67% improvement in reducing collisions. Another work 
presented a Markov-based model to determine the optimal 
retransmission probability, balancing throughput and delay. 

In [16]. The authors develop a comprehensive 
mathematical model to evaluate the throughput capacity of 
a LoRaWAN communication channel. The model accounts for 
key parameters, including Spreading Factor (SF), duty cycle, 
payload size, and message structure, providing quantitative 
insights into how these variables impact performance. The 
study further explores throughput under different regional 
duty cycle regulations (0.1%, 1%, and 10%), providing 
valuable guidance for regulatory compliance and deployment 
planning. It analyzes the trade-offs between message 
repetitions and range, showing that a reduction in repetitions 
with higher SF can lead to a 28% increase in throughput.  

To address collision management in dense networks, [17] 
introduces CANL, an open-loop collision avoidance protocol 
that leverages neighbor listening instead of relying on the 
unreliable Channel Activity Detection (CAD) mechanism. 
CANL signiϐicantly enhances the Packet Delivery Ratio (PDR) 
and energy efϐiciency in dense deployments. The authors 
also propose CANL RTS, a variant that overcomes hardware 
limitations by employing a short request-to-send (RTS) frame. 
Extensive simulation results using an enhanced LoRaSim tool 
demonstrate CANL’s superiority over traditional ALOHA and 
CAD+Backoff schemes. 

3. Methods 
This section outlines the research methodology adopted 

for the study. A scientiϐic approach forms the foundation of 
the work, with a strong emphasis on quantitative methods to 
support experimental analysis. The chosen methods ensure 
a systematic and objective investigation of the research 
objectives (Figure 1). 

A. System model 

The node is an end device equipped with a radio transmitter 

that sends data packets. The decision maker represented 
by the robot implements the Hierarchical Discrete Pursuit 
Learning Automata (HDPA) algorithms. Its role is to select 
the optimal radio channel for data transmission based on past 
transmission success rate feedback from the gateway. The 
decision maker updates the probability distribution of channel 
selection using the number of times it received a reward over 
the number of times it was selected.   

The feedback loop represents the action taken by the 
decision maker regarding which channel to use for the next 
data transmission. Beta represents the feedback received 
from the gateway. If the transmission is successful, the 
decision maker receives positive feedback reinforcing the 
chosen channel. If unsuccessful, the decision maker receives 
negative feedback, decreasing the likelihood of selecting that 
channel again.  

B. Proposed algorithm fl owchart 

In terms of process ϐlow, the node transmits data to the 
gateway using a channel selected by the decision-maker. The 
gateway provides feedback on the transmission’s success. 
Positive feedback increases the probability of selecting a 
successful channel in the future, while negative feedback 
decreases the probability of encouraging the decision maker to 
explore other channels. The decision maker then continuously 
updates its channel selection probabilities based on the 
feedback, adapting to the dynamic network environment to 
optimize data transmission reliability (Figure 2).  

C. Mathematical development 

Algorithm t=0 

Loop 

1. Depths from 0 to K-1: 

𝒜 [0,1] selects a channel by randomly sampling as per its 
channel probability vector [𝑝{1,1}(𝑡), 𝑝{1,2}(𝑡)]. We denote 𝑗1(𝑡) 
as the chosen channel at depth 0 with 𝑗1(𝑡)𝜖 {1,2}. 

𝒜 {1, 𝑗1(𝑡)} chooses a channel and activates the next LA at 
depth «2». 

Figure 1: Proposed LoRa Network Model This model consists of several key 
components that work together to optimize data transmission through 
learning and feedback mechanisms.
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The process continues until K-1, which is the level that 
chooses the channel. 

2. Depth K: 

The index of the channel chosen at depth K is denoted 

(𝑡) 𝜖 {1, . . . 2𝐾}. 

Update the estimated chance of reward based on the 
response received from the environment at leaf depth K: 

𝑢 {𝐾, (𝑡)} (𝑡 + 1) = 𝑢 {𝐾, 𝐽𝑘(𝑡)}(𝑡) + (1 − 𝛽(𝑡))  

𝑣 {𝐾, (𝑡)} (𝑡 + 1) = 𝑣 {𝐾, 𝐽𝑘(𝑡)} (𝑡) + 1 

{ , ( )} { , ( )} { , ( )}
ˆ ( 1) ( 1) / ( 1).k jk t k jk t k jk td t u t v t     

For the other channel at the leaf, where 𝑗 𝜖 {1, . . ., 2𝐾} and 
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3. Deϐine the reward estimate recursively for all 
subsequent channels along the path to the root, 𝑘 𝜖 {0,..., 𝐾 − 
1}, where 𝒜 at any one level inherits the feedback from the 𝒜 
at the level below: 

{ , } { 1,2 -1} { , ( )} { 1,2 }
ˆ ˆ ˆ( ) ( ( ) / , ( ))k j k j k jk t k jd t max d t v d t   

Update the channel probability vectors along the path to 
the leaf with the current maximum reward estimate: 

Each 𝒜 𝑗 𝜖 {1, . . ., 2𝑘} at depth k where 𝑘 𝜖 {0, . . ., 𝐾 − 1} has 
two channels 𝛼 {𝑘 + 1,2𝑗 − 1} and 𝛼 {𝑘 + 1,2𝑗}.  

We denote the larger element between { 1,2 1}
ˆ ( )k jd t   and 

{ 1,2 } 1
ˆ ( )) as j ( ){2 1,2 }h

k j kd t t j j    and the lower reward estimate 

as 1 1j ( ) {2 1,2 } \ j ( ).h h
k kt j j t    

Update P{k+1,𝑗𝑘ℎ+1(𝑡)} and/or using the estimate  

{ 1,2 -1} { 1,2 }
ˆ ˆ( )  ( )k j k jd t and d t   for all 

 𝑘 𝜖 {0, . . ., 𝐾 − 1} as: If 𝛽(𝑡) = 0 Then  

P{k+1 ,𝑗𝑘ℎ+1(𝑡)}(t + 1) = min (P{k+1 ,𝑗𝑘ℎ+1(𝑡)}(t) + Δ, 1), 

 P{k 1 , ( )( 1) 1 P{k 1 , 1( )} t  1 ,jh t t jkh t      

𝑘+1

Else

β(𝑡) = 1 Then 

P{k+1 ,𝑗𝑘ℎ+1(𝑡)}(t + 1) = max (P{k+1 ,𝑗𝑘ℎ+1(𝑡)}(t) + Δ, 0), 

 P{k 1 , ( )( 1) 1 P{k 1 , 1( )} t  1 ,jh t t jkh t      

𝑘+1
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End if 

4. For each Learning Automata, if either of its channel 
selection probabilities surpasses a threshold T, with T being 
a positive number close to unity, the channel probability will 
stop updating, meaning the convergence is achieved. 

5. t= t+1 

End Loop 

D. Software environment 

MATLAB is chosen for its robust capabilities and extensive 
support for simulations involving complex algorithms and 
network models. 

E. System simulation  

Variable Symbol Description 

Number  of  
channels 

𝑁 Total number of available channels in the network. 

Initial  
channel 
probability 

𝑃(0) Initial probability vector for channel selection, 𝑃(0) = [𝑝1, 
𝑝2, … , 𝑝𝑁] 

Reward 𝑅 Reward metric for successful transmission on a channel, 
such as PDR, SNR. 

Learning Rate  𝛿 Step size for probability updates. 

Hierarchical levels  𝐿 Number of levels in the HDPA hierarchy. 

Convergence 
threshold 

𝐵 The threshold for convergence, indicating when the 
algorithm has likely found the optimal channel. 

Maximum 
iteration 

𝑇 Maximum number of iterations for the simulation. 

Action selection 
probability 

𝑃𝑖 Probability of selecting channels at iteration.  

Reward estimate 𝑑𝑖 Estimate of the reward for channel i. 

Channel State 𝑆 The state of each channel is either idle or busy. 

Network topology / Random

Number of nodes / 2 end devices 

Figure 2: Simulation fl ow chart.
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This process combines theoretical modeling with practical 
experiments to validate the hypothesis that HDPA can enhance 
the efϐiciency and reliability of channel selection in LoRaWAN 
networks. 

The simulation setup begins with the conϐiguration of 
the node to transmit data packets. This node represents 
an end device in the LoRaWAN network, equipped with a 
radio transmitter. The simulation adheres to the channel 
access mechanism deϐined in the LoRa Alliance [18]. The 
node interacts with the gateway, responsible for receiving 
the transmitted data. The gateway acts as an intermediary, 
forwarding the data to a server network for processing and 
storage. 

At the heart of the simulation is the decision maker, which 
implements the HDPA algorithm. The decision maker selects 
the optimal radio channel for data transmission based on 
the feedback from the previous transmissions. This feedback 
involves the gateway providing success or failure notiϐications 
for each transmission, which the decision maker uses to 
update its channel selection probabilities. 

The simulation is conducted in a MATLAB software 
environment, chosen for its robust capabilities in handling 
complex algorithms, providing a platform for running 
extensive simulations to assess performance under various 
conditions. The simulation parameters include the node, the 
channel available the successful data transmission. 

Throughout the simulation, key performance metrics 
are monitored. Including accuracy, the overall network 
throughput, Std, and speed. By analyzing these metrics, the 
effectiveness of the HDPA can be evaluated. 

F. Simulation variable 

This section has detailed the methodological framework 
used to assess the HDPA algorithm for channel selection 
in LoRaWAN. By combining theoretical modeling with 
simulation-based validation and by outlining the system 
model and algorithmic structure, the study establishes a solid 
foundation for evaluating HDPA’s performance. The next 
section presents and analyzes the results obtained through 
this methodology. 

4. Results and discussion
This section presents the outcomes of employing Learning 

Automata into LoRaWAN, highlighting the critical importance 
of efϐicient channel selection for network performance, aiming 
to test the effectiveness of HDPA. We present a comprehensive 
result from the simulation that was conducted and discuss the 
implications of these ϐindings. This analysis not only highlights 
the strengths of HDPA but also compares it with HCPA. 

     (1) 

Where Xi is the number of iterations in the i-th trial. n: the 
total number of iterations. 

   (2) 

 Standard deviation = √Variance   (3) 

 The performance of HDPA is demonstrated here using 
the formula above and carrying out the simulation results 
to ensure the effectiveness of our simulations; we set our 
number of iterations to be 9000 and 10,000, using 200 
experiments, expecting that the HDPA with the highest 
successful transmission probability would converge faster 
and select the best channel (Table 1). 

The simulation was done for the environment with 
8 channels on a benchmark successful transmission 
probabilities list in Figure 3, showing the probability of the 
actions with successful transmission, meaning the action with 
𝛽 = 0, which is a reward from the environment.  

Our simulation shows that the HDPA with a small Learning 
parameter can converge to the optimal channel with highly 
successful data transmission, and a higher learning parameter 
leads to fast convergence to the optimal channel; however, 
when we set the Learning parameter higher than 0.00087, 
the algorithm did not converge to the best channel with a 
successful transmission probability. Therefore, to ϐind the 
optimal channel with a higher speed of convergence, we 
decreased the Learning parameter step by step until we 
achieved 98.78% accuracy. From this value, the algorithm 
converged to the optimal channel, but took all the iterations 
that were set. The Mean value to converge to the optimal 
channel for the 200 experiments with the convergence 
criterion of 0.99 was 6,279.64, conϐirming that the HDPA 
achieved a 0.99 probability of choosing one of the channels 
with a std of 131.36% on the benchmark probabilities (Table 
2).  

The throughput curve presented in Figure 4 demonstrates 
the learning behavior of the HDPA algorithm over successive 
iterations. Initially, the throughput increases sharply, 

Figure 3: Reward probabilities for 8 channels.

Table 1: List of successful data transmission probabilities for 8 channels.
Α1 Α2 Α3 Α4 Α5 Α6 Α7 Α8 

0.199 0.282 0.394 0.499 0.681 0.698 0.971 0.999 

Table 2: Results of our simulations for 8 channels.
Parameter HDPA 

Mean 6,279.64 
Std 131.36 

Accuracy 98.78% 
Learning parameter 8.7𝑒−4 
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indicating that the algorithm is rapidly acquiring knowledge 
about the environment and selecting efϐicient channels. The 
early phase reϐlects the exploratory strength of HDPA in 
adapting to dynamic conditions. As iterations progress, the 
throughput gradually levels off and stabilizes around 450 
bps, signifying convergence to a set of optimal channels. This 
steady-state performance suggests that HDPA has effectively 
learned the optimal channel strategy, resulting in sustained 
high throughput. The graph validates the effectiveness of 
the proposed approach in optimizing network performance 
through fast adaptation and robust learning in a ϐluctuating 
communication environment. 

Figure 5 illustrates the process of selecting the most 
optimal channel from a set of eight available channels. 
Initially, all channels are explored for communication, with 
one channel demonstrating a consistently higher probability 
of successful message transmission, while others perform 
with comparatively lower success rates. At the beginning of 
the simulation, there is no prior knowledge regarding which 
channel is optimal. The Learning Automata mechanism 
enables the system to gradually converge toward the most 
effective channel, thereby maximizing throughput. Over time, 
channels 2 and 7 are identiϐied by the HDPA as the best and 
second-best channels, respectively. Around iteration 3000, 
channel 7 temporarily outperforms channel 2. However, due 
to the stochastic nature of the learning and decision-making 

process, channel 2 is ultimately selected as the optimal channel, 
highlighting the HDPA’s capability to balance exploration and 
exploitation, ensuring adaptability while optimizing long-
term performance (Figure 6) (Table 3). 

The comparative analysis between HDPA and HCPA, as 
illustrated in the graph and table, reveals key performance 
differences.  When the convergence criterion was set to 0.9, 
HCPA outperformed HDPA by converging in approximately 
3,500 iterations, compared to over 4,500 for HDPA across 
200 experiments. However, as the convergence threshold 
increased toward 0.99, our target for successful data 
transmission, HDPA, began to outperform HCPA. For instance, 
at a convergence level of 0.97, HDPA converged in around 
8,000 iterations, while HCPA required about 9,000. 

The optimal learning rates identiϐied were 0.00087 for 
HDPA and 0.00069 for HCPA. In terms of mean iterations to 
converge, HDPA averaged 6,279.64 with a higher standard 
deviation, indicating greater variability, whereas HCPA 
averaged 6,778.34 with a lower standard deviation of 117.12. 
Importantly, HDPA achieved higher accuracy, close to 99%, 
making it more effective for precise channel selection in 
LoRaWAN compared to HCPA. 

5. Conclusion and future work 
A. Conclusion 

This study has evaluated the performance of the HDPA for 
channel selection in LoRaWAN networks. The study began by 
identifying the limitations of static and non-learning-based 
channel selection mechanisms and emphasized the need for 
an adaptive solution in high-density and interference-heavy 
IoT environments.

Figure 4: Throughput.

Figure 5: Channel selection updating probability for successful transmission.

Figure 6: Number of iterations for convergence for 200 experiments.

Table 3: Comparison between HDPA and HCPA.
Parameters HDPA HCPA 

Mean 6,279.64 6,778.34 
STD 131.36 117.12 

Accuracy 98.78% 93.89% 
Learning parameter 8.7e−4 6.9e−4
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The HDPA algorithms were theoretically formulated and 
tested through MATLAB simulations. The results conϐirmed 
that HDPA achieves faster convergence, higher channel 
selection accuracy (98.78%), and improved throughput over 
conventional models like HCPA. The HDPA model dynamically 
updates its channel selection probabilities in response to real-
time feedback, making it particularly effective in environments 
where channel quality ϐluctuates. 

These ϐindings demonstrate that HDPA is a promising tool 
for optimizing LoRaWAN performance in both current and 
future IoT applications.

B. Future works 

The successful integration of HDPA in this study opens an 
avenue for future research. One potential area is expanding 
the scope of Learning Automata to manage interference in 
densely populated IoT networks represents a critical research 
frontier. Future studies could also focus on real-world trials to 
better understand the practical challenges and opportunities 
of implementing these algorithms in diverse environments.   

References 
1. Cheikh I, Sabir E, Aouami R, Sadik M, Roy S. Throughput-Delay Tradeoffs for 

Slotted-Aloha-based LoRaWAN Networks. In: 2021 International Wireless 
Communications and Mobile Computing (IWCMC); 2021 Jun 28–Jul 
2; Harbin City, China. IEEE; 2021. Available from: https://doi.org/10.1109/
IWCMC51323.2021.9498969

2. Wang H, Pei P, Pan R, Wu K, Zhang Y, Xiao J, et al. A Collision Reduction 
Adaptive Data Rate Algorithm Based on the FSVM for a Low-Cost LoRa 
Gateway. Mathematics. 2022;10(21):3920. Available from: https://doi.
org/10.3390/math10213920

3. Zhang X, Jiao L, Granmo OC, Oommen BJ. Channel selection in cognitive 
radio networks: A switchable Bayesian learning automata approach. In: 
2013 IEEE 24th Annual International Symposium on Personal, Indoor and 
Mobile Radio Communications (PIMRC); 2013 Sep 8–11; London, UK. IEEE; 
2013. Available from: https://doi.org/10.1109/PIMRC.2013.6666540

4. Diane A, Diallo O, Ndoye EHM. A systematic and comprehensive review 
on low-power wide-area network: characteristics, architecture, 
applications, and research challenges. Discov Internet Things. 2025;5(1):7. 
Available from: https://doi.org/10.1007/s43926-025-00097-6

5. Bai RCAYJH. Evolutionary reinforcement learning: A survey. Intell Comput. 
2023;2:0025. Available from: https://doi.org/10.34133/icomputing.0025

6. Omslandseter RO, Jiao L, Zhang X, Yazidi A, Oommen BJ. The hierarchical 
discrete pursuit learning automaton: a novel scheme with fast 
convergence and epsilon-optimality. IEEE Trans Neural Netw Learn 
Syst. 2022;35(6):8278–8292. Available from: https://doi.org/10.1109/
TNNLS.2022.3226538

7. Yazidi A, Zhang X, Jiao L, Oommen BJ. The hierarchical continuous pursuit 
learning automation: a novel scheme for environments with large 
numbers of actions. IEEE Trans Neural Netw Learn Syst. 2019;31(2):512–526. 
Available from: https://doi.org/10.1109/TNNLS.2019.2905162

8. Prakash A, Choudhury N, Hazarika A, Gorrela A. Effective Feature Selection 
for Predicting Spreading Factor with ML in Large LoRaWAN-based Mobile 
IoT Networks. In: 2025 National Conference on Communications (NCC); 
2025 Feb 20–22; New Delhi, India. IEEE; 2025. Available from: https://doi.
org/10.1109/NCC63735.2025.10983488

9. Lavdas S, Bakas N, Vavousis K, Khalifeh A, Hajj WE, Zinonos Z. Evaluating 
LoRaWAN Network Performance in Smart City Environments Using 
Machine Learning. IEEE Internet Things J. 2025:1–1. Available from: https://
doi.org/10.1109/JIOT.2025.3562222

10. Garlisi D, Pagano A, Giuliano F, Croce D, Tinnirello I. Interference 
Analysis of LoRaWAN and Sigfox in Large-Scale Urban IoT Networks. IEEE 
Access. 2025;13:44836–44848. Available from: https://doi.org/10.1109/
ACCESS.2025.3550014

11. Keshmiri H, Emami R, Rezaee M, Wang A. LoRa Resource Allocation 
Algorithm for Higher Data Rates. Sensors. 2025;25(2):518. Available from: 
https://doi.org/10.3390/s25020518

12. Li A, Fujisawa M, Urabe I, Kitagawa R, Kim SJ, Hasegawa M. A lightweight 
decentralized reinforcement learning based channel selection 
approach for high-density LoRaWAN. In: 2021 IEEE International 
Symposium on Dynamic Spectrum Access Networks (DySPAN); 2021 
Dec 13–15; Los Angeles, CA, USA. IEEE; 2021. Available from: https://doi.
org/10.1109/DySPAN53946.2021.9677146

13. Oyewobi SS, Hancke GP, Abu-Mahfouz AM, Onumanyi AJ. An effective 
spectrum handoff based on reinforcement learning for target channel 
selection in the industrial Internet of Things. Sensors. 2019;19(6):1395. 
Available from: https://doi.org/10.3390/s19061395

14. Hasegawa S, Kim SJ, Shoji Y, Hasegawa M. Performance evaluation of 
machine learning based channel selection algorithm implemented on 
IoT sensor devices in coexisting IoT networks. In: 2020 IEEE 17th Annual 
Consumer Communications & Networking Conference (CCNC); 2020 
Jan 10–13; Las Vegas, NV, USA. IEEE; 2020. Available from: https://doi.
org/10.1109/CCNC46108.2020.9045712

15. Loh F, Mehling N, Geißler S, Hoßfeld T. Simulative performance study of 
slotted Aloha for LoRaWAN channel access. In: NOMS 2022–2022 IEEE/
IFIP Network Operations and Management Symposium; 2022 Apr 25–29; 
Budapest, Hungary. IEEE; 2022. Available from: https://doi.org/10.1109/
NOMS54207.2022.9789898

16. Yurii L, Anna L, Stepan S. Research on the Throughput Capacity of 
LoRaWAN Communication Channel. In: 2023 IEEE East-West Design & Test 
Symposium (EWDTS); 2023 Oct 6–8; Batumi, Georgia. IEEE; 2023. Available 
from: https://doi.org/10.1109/EWDTS59469.2023.10297024

17. Gaillard G, Pham C. CANL LoRa: Collision Avoidance by Neighbor Listening 
for Dense LoRa Networks. In: 2023 IEEE Symposium on Computers and 
Communications (ISCC); 2023 Jul 3–6; Gammarth, Tunisia. IEEE; 2023. 
Available from: https://doi.org/10.1109/ISCC58397.2023.10218282

18. LoRa Alliance. TS001-1.0.4 LoRaWAN L2 1.0.4 Specifi cation. LoRa Alliance. 
2020;1(0):4.


