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Abstract

In the last decade, multi-objective particle swarm optimization (MOPSO) has 
been observed as one of the most powerful optimization algorithms in solving multi-
objective optimization problems (MOPs). Nowadays, it is becoming increasingly 
clear that MOPSO can handle complex MOPs based on the competitive-cooperative 
framework. The goal of this paper is to provide a comprehensive review of MOPSO 
from the basic principles to hybrid evolutionary strategies. To offer the readers 
insights on the prominent developments of MOPSO, the key parameters on the 
convergence and diversity performance of MOPSO were analyzed to refl ect the 
infl uence on the searching performance of particles. Then, the main advanced 
MOPSO methods were discussed, as well as the theoretical analysis of multi-
objective optimization performance metrics. Even though some hybrid MOPSO 
methods show promising multi-objective optimization performance, there is much 
room left for researchers to improve further, in particular in terms of engineering 
applications. As a result, further in-depth studies are required. This paper should 
motivate evolutionary computation researchers to pay more attention to this 
practical yet challenging area.

when solving the complex MOPs, researchers draw lessons 
from the laws of nature and biology to design a class of Multi-
objective Evolutionary Algorithms (MOEAs) to improve 
the convergence accuracy. As an important ϐield of artiϐicial 
intelligence, MOEA has made many breakthroughs in 
algorithm theory and algorithm performance, because of its 
characteristics of intelligence and parallelism. It has played an 
important role in scientiϐic research and production practice.  
During the last two decades,  MOEA has become a new research 
direction, because it has better global search ability and does 
not rely on a speciϐic mathematical model and characteristics 
of solving the problem when solving the multi-objective 
optimization problem [4,5]. The performance of MOEAs is 
mainly evaluated by a set of non-dominated solutions obtained 
by the performance metrics, including the convergence metric 
and diversity metric. In general, the typical MOEAs include 
the multi-objective genetic algorithm (MOGA) [6], the Multi-
objective Differential Evolution (MODE) algorithm [7], and so 
on [8-10]. It is precisely this way that deepening the research 
of computational intelligence algorithms can promote the 
development of intelligent technology and promote innovation 
in many ϐields. Distinguishingly, the multi-objective particle 
swarm optimization (MOPSO) algorithm based on the bird 

 I. Introduction

Most of the practical engineering application problems, 
such as electrical and electronic engineering problems, civil 
engineering problems, are Multi-objective Optimization 
Problems ( MOPs) [1]. MOPs not only contain multiple 
conϐlicting objectives simultaneously, but the objectives 
are usually time-varying and coupled with each other. The 
presence of multiple conϐlicting objectives can give rise to a set 
of trade-off solutions known as Pareto Front in the objective 
space and Pareto Set in the decision space, respectively 
[2]. Since it is practically impossible to obtain the entire 
Pareto Front solutions, an approximation of non-dominated 
solutions can be obtained. The original multi-objective 
optimization approaches are usually based on transforming 
the MOP to several single objectives by different weight 
methods and then obtaining a set of non-dominated optimal 
solutions. Therefore, traditional optimization methods have 
many drawbacks, such as high computational complexity and 
long time, so they cannot meet the requirements of speed, 
convergence, and diversity [3].

Generally speaking, to obtain an accurate solution set 
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population shows complex intelligent behavior through 
the cooperation of simple individual particles, and uses 
social sharing among the bird population to promote the 
evolutionary process of the algorithm. Therefore, MOPSO 
 realizes the transcendence of the swarm intelligence that can 
exceed the outstanding individual particle intelligence [11]. 
Meanwhile, due to the few key operation parameters, high 
convergence speed, and ease of implementation, MOPSO can 
handle many kinds of objective functions and constraints. 

In the MOPSO community, the key parameters can impact 
the exploitation ability and exploration ability in the searching 
process of particles [12]. Meanwhile, different updating 
methods will guide the particles to search different areas and 
then affect the performance of the whole population. With 
the increasing number of iterations, more a nd more non-
dominated solutions will be generated [13]. As the amount 
of calculation increases, the archive cannot accommodate 
the whole  non-dominated solutions [14]. The convergence 
and diversity of the non-dominated solutions in the archive 
will become important. In order to reach good convergence 
and diversity of the non-dominated in the archive, the 
three main optimization stages, which include the update 
of the archive, the selection of the global best, and the key 
ϐlight parameter adjustment, will be considered. Like all 
MOEAs, MOPSO also needs an explicit diversity mechanism 
to preserve the non-dominated solutions in the archive. In 
[15], a selection procedure was proposed to prune the non-
dominated solutions. In order to obtain a good diversity 
of the archive, a novel reproduction operator based on 
differential evolution was presented, which can create 
potential solutions and accelerate the convergence toward 
the Pareto set [16]. The MOPSO emerged as a competitive 
and cooperative form of evolutionary computation in the 
last decade. One of the most special features of MOPSO is the 
updating of the global best (g-Best) and personal best (p-Best) 
[17,18]. Aiming at the selection of the  g-Best and p-Best, a 
novel Parallel Cell Coordinate System (PCCS) is proposed 
to accelerate the convergence of MOPSO by assessing the 
evolutionary environment [19]. Another important feature is 
the parameter adjustment; for example, the inertia weight can 
achieve the balance of exploration and exploitation. And the 
coefϐicients adjustment can also inϐluence movement of the 
particle. In [20], a time-varying ϐlight parameter mechanism 
was proposed for the MOPSO algorithms. At present, there are 
many performance metrics in multi-objective optimization to 
determine the convergence and diversity of MOPSO. The main 
performance metrics of MOPSO contain the determination of 
convergence and diversity. Meanwhile, different application 
environments of MOPSO will consider different performance 
metrics and impact the future development trend.

At present, especially in the complex science ϐield, MOPSO 
has effectively solved problems which is difϐicult to describe 

in many complex systems. It breaks through the limitations 
of the traditional multi-objective optimization algorithm, and 
has been used in many applications in various academic and 
industrial ϐields so far [21]. MOPSO has made encouraging 
progress in many applications in various academic and 
industrial ϐields so far, which is including the automatic 
control system [22], communication theory [23], medical 
engineering [24], electrical and electronic engineering [25], 
communication theory [26], fuel and energy [27], and so on. 

1) According to the analysis and studies on MOPSO, it 
has become a popular algorithm to solve the complex 
MOPs. The typical characteristics are summaDifferent 
from the cross mutation operation of other 
optimization algorithms, MOPSO is much simpler and 
straightforward to implement. As an MOEA based on a 
bird group, MOPSO shows complex intelligent behavior 
through the cooperation of simple individual particles, 
and uses social sharing among groups to promote 
the evolutionary process of the algorithm. Therefore, 
realizing the breakthrough of swarm intelligence on 
MOPSO that can exceed the excellent individual particle 
intelligence.

2) As indicated by the current studies on MOPSO, it has 
few key parameters. It can be seen from the updating 
formula of the MOPSO algorithm that the position and 
speed of the particle are greatly inϐluenced by the key 
parameters. The convergence of the algorithm is the 
fundamental guarantee of its application. The effect 
of the key parameters of the MOPSO algorithm on the 
convergence of the algorithm is analyzed in detail, and 
the ϐlight direction of the particles is calculated by the 
state transfer matrix. The constraint condition [28] 
that satisϐies the parameters of particle trajectory is 
obtained.

3) Compared with other MOEAs, the fast convergence 
is a typical characteristic of MOPSO. Since the ϐlight 
direction of MOPSO can be obtained by the g-Best and 
p-Best of the population, the whole particle swarm is 
easy to gather or disperse. Therefore, the convergence 
rate of MOPSO will be relatively faster than other 
MOEAs.

In order to make a summary of the work in the last two 
decades, we discussed the achievements and the direction 
of development and wrote this review article. This paper 
attempts to provide a comprehensive survey of MOPSO. The 
major scheme  of this paper is shown in Figure 1. Section II 
brieϐly describes the basic concepts and key parameters of 
MOPSO. In Section III, the improved approaches of MOPSO 
by different performance metrics are presented, and the 
theoretical analysis of MOPSO is presented. Then, Section 
IV gives the potential future research challenges of MOPSO. 
Finally, the paper is concluded in Section V.
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II. Characteristics of Multi-objective Particle 
Swarm Optimization

Faced with the complex MOPs in practical application, the 
traditional optimization method has the problems of high 
computational complexity and long time, which cannot meet 
the requirements of computing speed, convergence, diversity, 
and so on. In order to solve the complex MOPs better, scientists 
draw lessons from the laws of nature and biology to design a 
computational intelligence algorithm for solving the problem. 
As an important ϐield of artiϐicial intelligence, computational 
intelligence algorithms have made many breakthroughs in 
algorithm theory and algorithm performance because of 
their characteristics of intelligence and parallelism. However, 
the MOPSO algorithm is a typical computational intelligence 
algorithm with strong optimization ability. It has been able 
to solve the multi-objective optimization problem, which 
is difϐicult to establish accurate models in many complex 
systems.

A. Basic Concept of MOPSO

MOPSO is a population-based optimization technique, in 
which the population is referred to as a swarm. A particle has 
a position which is represented by a vector: 

,1 ,2 ,( ) [ ( ), ( ),.... ( )],i i i i Dt x t x t x tx                   (3)

where D is the dimension of the search space, i=1, 2, …, S, S 
is the size of the swarm. And each particle has a velocity which 
is recorded as:

,1 ,2 ,( ) [ ( ), ( ),.... ( )],i i i i Dt v t v t v tv                     (4)

In the evolutionary process, pi(t) is the best previous 

position of the particle at the tth iteration which is recorded as 
pi(t)=[pi,1(t), pi,2(t),…, pi, D(t)], and g-Best(t) is the best position 
found by the swarm which is recorded as g-Best(t)=[g-Best1(t), 
g-Best2(t),…, g-Best D(t)]. A global best solution, g-Best, can 
be found by the whole particle swarm. In each iteration, the 
velocity is updated by:

, , 1 1 , , 2 2 ,( 1) ( ) ( ( ) ( ) ( Best ( ) ( )),i d i d i d i d d i dt v t c r p t x t c r g t x t     v  (5)

where i=1, 2, …, s, t represents the tth iteration in the 
evolutionary process; d=1, 2, …, D represents the dth dimension 
in the searching space; ɷ is the inertia weight, which is used 
to control the effect of the previous velocities on the current 
velocity; c1 and c2 are the acceleration constants, r1 and r2 are 
the random values uniformly distributed in [0, 1]. Then the 
new position is updated as (Table 1): 

, , ,( 1) ( ) ( 1).i d i d i dx t x t x t                       (6)

Remark 1: MOPSO is a population-based evolutionary 
algorithm that is inspired by the social behavior of the birds’ 
ϐlocking motion, which has been steadily gaining attention 
from the research community because of its high convergence 
speed. The aggregate motion of the whole particles formed 
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Figure 1: Themajorscheme of thispaper.

Table 1: The basic MOPSO algorithm
Initializing the ϐlight parameters, population size, the particles positions x(0) and 
velocity v(0)
Loop

Calculating the ϐitness value 
Getting the non-dominated solutions
Storing the non-dominated solutions in the archive 
If (the number of archive solutions exceeds capacity)

Pruning the archive 
End
Selecting the g-Best from the archive
Updating the velocity xi(t) and position vi(t) % Eq.(5-6)

End loop
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the searching movement of the MOPSO algorithm. Like other 
evolutionary  algorithms, MOPSO suffers from a notable bias: it 
tends to perform best when the optimum is located at or near 
the center of the initialization region, which is often the origin.

In MOPSO, particles move through the search space using 
an information interaction between particles, and each particle 
is attracted by the personal and global best solutions to move 
toward their potential leader. Particles can be connected in 
any kind of neighborhood topology, which contains the ring 
neighborhood topology, the fully connected neighborhood 
topology, the star network topology, and the tree network 
topology. For instance, due to the fully connected top o logy in 
which all particles are connected, each particle can receive the 
information of the best solution from the whole swarm at the 
same time. Thus, when using the fully connected topology, the 
swarm is inclined to converge more rapidly than when using 
other local best topologies [29].

Remark 2: In the searchi ng process of an MOPSO algorithm, 
when convergence is considered separately, it may lead to 
a local optimal trap. If diversity is considered separately, 
the convergence speed and quality will be an unsolved 
problem. In the optimization process of MOPSO algorithm, 
many optimization patterns could exert an inϐluence on the 
optimization results, in terms of leader selection, archive 
maintenance, ϐlight parameter adjustment, population size, 
and perturbation. Therefore, these several important aspects 
will become the key means to improve the optimization effect. 
The leader selection affects the convergence capability and 
the distribution of non-dominated solutions along the Pareto 
Front. 

B. Key Parameters of MOPSO

The relationship between the key parameters is depicted 
in Figure 2.

(a) Average and maximum velocity 

MOPSO algorithm makes full use of shared learning 
factor to modify the velocity updating formulas, which aims 
to improve the global search ability [30]. The optimal value 
of maximum velocity is problem-speciϐic. Further, when 
maximum velocity was implemented, the particle’s trajectory 
failed to converge. From the velocity updating formula of 
the particle, it can be seen that the velocity of the particle is 
subjected to the key parameters (ω, c1, and c2) of the particles. 
The contribution rate of a particle’s previous velocity to its 
velocity at the current time step is determined by the key 

parameters [31]. It is necessary to limit the maximum velocity. 
For example, if the velocity is very large, particles may ϐly out 
of the search space and decrease the searching quality of the 
MOPSO algorithm. In contrast, if the velocity is very small, 
particles may become trapped in the local optimum. In order 
to hinder too quick movement of particles, their velocities are 
bounded to speciϐied values [32].

(b) Inertia weight and acceleration factors

From the ϐlight equations, it is clearly shown that the new 
position of each particle is affected by the inertia weight ω 
and two cognitive acceleration coefϐicients c1 and c2. The 
acceleration coefϐicient c1 prompts the attraction of the 
particle towards its p-Best, and the acceleration coefϐicient c2 
prompts the attraction of the particle towards the g-Best. The 
parameter inertia weight ω helps the particles converge to 
personal and global best, rather than oscillating around it. The 
inertia weight controls the inϐluence of previous velocities on 
the new velocity [31].

Too high values of cognitive acceleration coefϐicient 
weaken exploration ability, while too high values of social 
acceleration coefϐicient lead to weak exploitation capability 
[32]. Therefore, suitable cognitive acceleration coefϐicients 
are very important for the optimization process of an MOPSO 
algorithm. Most of the prior research has indicated that the 
inertia weight ω controls the impact of the previous velocity 
on the current velocity, which is employed to trade off between 
the global and local exploration abilities of the particles [30]. 
Moreover, the purpose of designing the adaptive inertia weight 
is to balance the global and local search ability of the particles. 
Most previous works have demonstrated that a larger inertia 
weight ω facilitates global exploration, while a small inertia 
weight tends to facilitate local exploration to guide the current 
search area. Suitable selection of inertia weight ω can provide 
balance between global and local exploration abilities and 
thus require fewer iterations on average to ϐind the optimum. 
In the previous research, different inertia weight mechanisms 
have been designed to balance the global searching ability 
and the local searching ability, where the inertia weight was 
adjusted dynamically to adapt the optimization process.

(c) Global best (g-Best) and personal best (p-Best)

In MOPSO, each particle moves toward the most promising 
directions guided by the g-Best and the p-Best together, and 
the whole population follows the trajectory of g-Best [33]. The 
g-Best and the p-Best can guide the evolutionary direction of 
the whole population. In addition, the updating formula of the 
MOPSO algorithm has illustrated that the value of the g-Best 
and the p-Best can play an important role in the updating of 
the velocity and position. In the searching process, selecting 
the appropriate g-Best and the p-Best in MOPSO is a feasible 
way to control its convergence and promote its diversity. In 
recent years, the popular issue of Best selection is keeping 
the balance of convergence and diversity. Some researchers 

Global best (gBest) and 
personal best (pBest)

Inertia weight and 
acceleration factors Population size

Average and maximum 
velocityThe velocity of individual particle

Figure 2: The relationship between the key parameters.
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have proposed adaptive selection mechanisms that select the 
g-Best with convergence and diversity features in the dynamic 
evolutionary environment. 

(d) Population size

The population size of the MOPSO does indirectly contribute 
to the effectiveness and efϐiciency of the performance of 
an algorithm [34]. One contribution of population size to 
these population-based evolutionary algorithms is the 
computational cost. 

In the searching process, if an algorithm employs an 
overly large population size, it will enjoy a better chance of 
exploring the search space and discovering possible good 
solutions, but inevitably suffer from an undesirable and high 
computational cost. In contrast, an MOPSO algorithm with an 
insufϐicient population size may become trapped in premature 
convergence or may obtain the solution archive with a loss of 
diversity. 

The external archive can store a certain number of non-
dominated solutions, which determine the convergence and 
diversity performance of MOPSO. Although there are many 
external archive strategies that have been proposed, several 
strategies can achieve a good balance between diversity and 
convergence. In addition, the research on the external archive 
strategies is still necessary to improve the performance of 
MOPSO as a whole. On one hand, diversity is one of the most 
characteristic features in the external archive of MOPSO, 
which reϐlects the validity of the MOPs to be solved. On the 
other hand, convergence is another criterion to judge the 
performance of MOPSO and its approach to the true Pareto 
Front.

Remark 3: The convergence and diversity are two 
principles for evaluating the performance of MOPSO. 
Meanwhile, the adjustments of the key parameters can affect 
the ϐlight direction of particles and then obtain different 
optimization performance. However, the performance metrics 
have been designed with different standpoints to evaluate the 
performance of MOPSO. Three typical performance criteria 
have been considered in multi-objective optimization: 1) 
the number of non-dominated solutions. 2) the convergence 
of non-dominated solutions to the Pareto Front. 3) the 
diversity of non-dominated solutions in the objective space. 
In particular, a set of optimal non-dominated solutions with 
best convergence and diversity, which are approaching the 
true Pareto Front and scattering evenly, is generally desirable.

III. Diff erent Performance Metrics of MOPSO
In the multi-objective optimization performance metrics, 

two major performance criteria, namely, convergence and 
diversity, have typically been taken into considerations. Based 
on the convergence and diversity performance of MOPSO, the 
existing improved approaches categorized into three groups. 

1) Diversity metrics: These metrics contain two aspects: 
a) Distribution measures whether evenly scattered are the 
optimal non-dominated sol u tions, and b) spread demonstrates 
whether the optimal non-dominated solutions approach the 
extrema of the Pareto Front.

2) Convergence metrics: These metrics can measure t h e 
degree of approximation between the optimal non-dominated 
solutions by the proposed MOPSO and the true Pareto Front.

3) Convergence-diversity metrics: These metrics can 
both indicate and measure the convergence and diversity of 
the optimal non-dominated solutions.

According to the above-mentioned analysis, the major 
performance metrics of MOPSO are shown in Figure 3.

A. Diversity metrics

Diversity metrics demonstrate the distribution and spread 
of the solutions in the archive. 

(a) Distribution in diversity met r ics

The distribution quality of the non-dominated solutions 
in the archive is an important aspect to reϐlect the diversity 
performance of the MOPSO algorithm. 

The spacing (SP) metric: The distribution is derived from 
the non-dominated solutions in the archive, which is deϐined 
as:

2
1

SP( ) ( ) / ( 1),s
ii

S d d S


                      (7)

Where 
,

min ( ) ( )
j i j

i i j i
s S s s

d F s F s s S
 

    

   . Di is the minimum 

Eucl i dean distance between the solution .js S
  and the 

solutions .js S
  d  Is the average Euclidean distance of all 

the distances. If the value of SP is larger, it will represent a 
poor distribution of diversity. On the contrary, the smaller 
SP can indicate the MOPSO algorithm with good distribution 
performance.

SP is used to measure the spread of vectors throughout 
the non-dominated vectors found so far. Since the “beginning” 
and “end” of the current Pareto front are known, a suitably 
deϐined metric judges how well the solutions in such a front 
are distributed. A value of zero for this metric indicates 
all members of the Pareto front currently available are 
equidistantly spaced. This metric addresses the second issue 
from the list previously provided.

Convergence Mertics: GD

Diversity Metrics

Convergence-Diversity Metrics: IGD, HV

MS
(Spread in diversity metrics)

SP
(Distribution in diversity metrics)

(S,P)
(Distribution and Spread in diversity metrics)

Major 
Performance 
Metrics of 
MOPSO

Figure 3: The major performance metrics of MOPSO.
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The *
2 ( )M S  Metric in [35] is equipped with a niche radius 

σ and takes the form of

1
2 1 2

*
2

{ }
( ) ,

1
s S

s S s s
M S

S




  




 
  

                 (8)

where measures how many solutions. 2s S


. They are 
located in their local vicinity. σ is a niche radius. Note that a 
niche neighboring size is needed to calculate the distribution 
of the non-dominated solution. The higher the value the 
MOPSO algorithm can obtain a good distribution of the non-
dominated solutions.

a) Increasing the diversity of the non-dominated 
solutions in the archive

Raquel, et al. presented an extended approach by 
incorporating the mechanism of crowding distance 
computation into the developed MOPSO algorithm to handle 
the MOPs, where the global best selection and the deletion 
method of the external archive have been used. The results 
show that the proposed MOPSO algorithm can generate a set 
of uniformly distributed non-dominated solutions close to the 
Pareto Front [36]. 

Coello, et al. proposed an external r e positor y   s trategy 
to guide the ϐ l ight direction of particles, which includes the 
archive controller and an adaptive grid [20]. The archive 
controller is designed to control the storage of non-dominated 
solutions in the external archive, and the adaptive grid is used 
to distribute in a uniform way to obtain the largest possible 
amount of hypercubes. The external repository strategy also 
incorporates a special mutation operator method which 
improves the exploratory capabilities of the particles and 
enriches the diversity of the MOPSO algorithm. Moreover, 
Moubayed, et al. developed a MOPSO by incorporating 
dominance with decomposition (D2MOPSO), which employs 
a new archiving technique that facilitates attaining better 
diversity and coverage in both objective and solution spaces 
[37]. 

Agrawal, et al. proposed a Fuzzy Clustering-based Particle 
Swarm Optimization (FCPSO) algorithm to solve the highly 
constrained conϐlicting multi-objective problems. The 
results indicated that it generated a uniformly distributed 
Pareto front whose optimality has been proved greater than 
ε-constrainted method [38]. 

A multi-objective particle swarm optimization is proposed 
in [39], which uses a ϐitness function derived from the maximin 
strategy to determine Pareto-domination. The results show 
that the proposed MOPSO algorithm produces an almost 
perfect convergence and spread of solutions towards and 
along the Pareto Front.

b) The inertia weight adjustment mechanisms improved 
the global exploration ability

Daneshyari, et al. introduced a cultural framework to 
design a ϐlight parameter mechanism for updating the 
personalized ϐlight parameters of the mutated particles in 
[40]. The results show that this ϐlight parameter mec h anism 
performs efϐiciently in exploring solutions close to the true 
Pareto front. In addition, a parameter control mechanism 
was developed to change the parameters for improving the 
robustness of MOPSO.

c) Selecting the proper g-Best and p-Best with better 
diversity

Ali, et al. introduced an attributed MOPSO algorithm, which 
can update the velocity of each dimension by selecting the 
g-Best solutions from the population [41]. The experiments 
indicate that the attributed MOPSO algorithm can improve 
the search speed in the evolutionary process. In [42], a multi-
objective particle swarm optimization with preference-
based sort (MOPSO-PS), in which the user’s preference was 
incorporated into the evolutionary process to determine the 
relative merits of non-dominated solutions, was developed to 
choose the suitable g-Best and p-Best. After each optimization, 
the most preferable particle can be chosen as the g-Best by the 
selection of the highest global evaluation value.

Zheng, et al. introduced a new MOPSO algorithm, which 
c a n   m aintain the diversity of the swarm and improve the 
performance of the evolving particles signiϐicantly over some 
state-of-the-art MOPSO algorithms by using a comprehensive 
learning strategy [43]. Torabi, et al. introduced an efϐicient 
MOPSO with a new fuzzy multi-objective programming model 
to solve an unrelated parallel machine scheduling problem. 
The proposed MOPSO exploits a new selection regime for 
preserving global best solutions and obtains a set of non-
dominated solutions with good diversity [44]. 

d) Dividing the particle population into multiple groups

Zhang, et al. introduced an enhanced problem-speciϐic 
local search technique (MO-PSO-L) to seek high-quality 
non-dominated  s olutions. The local search technique has 
been speciϐically designed for searching more potential non-
dominated solutions in the vacant space. The computational 
experiments have veriϐied that the proposed MO-PSO-L can 
deal with complex MOPs [45].

The effective archive strategy can generate a group of 
uniformly distributed non-dominant solutions and can 
accurately approach the Pareto frontiers. At the same time, the 
effective archive strategy can guide the direction of the particle 
ϐlight. The external knowledge base strategy also contains 
a special mutation operator method, which can improve 
the searching ability of the particles. In order to balance the 
global exploration ability and the local exploitation ability of 
the particle, the time-varying ϐlight parameter mechanism can 
update the ϐlight parameters by iteration and adjust the value 
of the inertia weight. It can strengthen the global searching 
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ability of the algorithm and obtain more optimal solutions. For 
multiple constrained multi-objective conϐlicting problems, 
the clustering method is used to divide the non-dominant 
solutions in the archive into multiple subgroups, which can 
enhance the local search performance of each subgroup. The 
dominating relationship is determined by calculating the 
ϐitness value of the target function, so that the non-dominant 
solution in the archive can be distributed evenly.

(b) Spread in diversity metrics

The spread of diversity is another typical aspect to reϐlect 
the diversity performance of MOPSO algorithms. 

The maximum spread (MS) metric: The spread quality of 
the non-dominated solutions in the archive can also represent 
the diversity, and MS is deϐined as:

max max min min
2

max min
1

min( ) max( )1MS [ ]
N

i i i i

i i i

f F f F
N F F

  


           (9)

Where Fi
max is the maximum value of the ith objective in 

Pareto Front, Fi
min is the minimum value of the ith objective 

in Pareto Front. fi
max is the maximum value of the ith objective 

in the solution archive; fi
min is the minimum value of the ith 

objective in the solution archive. Most of the previous work 
shows that the larger MS, the better spread of diversity will be 
obtained by the evolutionary algorithm in the archive.

The maximum spread is conceived to reveal how well 
obtained optimal solutions cover the true Pareto front. 
The larger the MS value is, the better the obtained optimal 
solutions cover the true Pareto front. The limiting value MS=1 
means that the obtained optimal solutions cover completely 
the true Pareto front.

a) Selecting the proper g-Best and p-Best with better 
diversity

Shim, et al. proposed an estimation distribution algorithm 
to model the global distribution of the population for balancing 
the convergence and diversity of the MOPSO algorithms 
[46]. The results indicate that this method can improve the 
convergent speed.

Multimodal multi-objective problems are usually posed 
as several single-objective problems that sometimes include 
more than one local optimum or several global optima. To 
handle the multimodal multi-objective problems effectively, 
Yue, et al. proposed a multi-objective particle swarm 
opt i mizer using an index-based ring topology to maintain a 
set of non-dominated solutions with good distribution in the 
decision and objective spaces [47]. Further, the experimental 
results show that the proposed algorithm can obtain a larger 
MS value and has made great progress on solving the decision 
space distribution. 

b) Increasing the diversity of the non-dominated 
solutions in the archive

Huang, et al. proposed a multi-objective comprehensive 
learning particle swarm optimizer (MOCLPSO) algorithm 
by integrating an external  a rchive technique to handle 
MOPs. Simulation results show that the proposed MOCLPSO 
algorithm can ϐind a much better spread of solutions and 
faster convergence to the true Pareto Front [48]. 

(c) Distribution and spread in diversity metrics

The metric Δ is introduced in [6], which is considered 
to reϐlect the distribution and spread of the non-dominated 
solutions in the archive simultaneously. The formulation of Δ 
is derived as follows:

1

1( , ) ,
( 1)

S
f l ii

f l

d d d d
S P

d d S d




  

 
  


                (10)

where di is the Euclidean distance between consecutive 
 s olutions. And it is the average of all. Df and dl are the minimum 
Euclidean distances between the extreme solutions in the true 
Pareto Front and the boundary solutions of the non-dominated 
solutions in the archive. S is the capacity of the archive.

In order to increase the diversity for dealing with MOPs, 
Tsai, et al. proposed an improved multi-objective particle 
swarm optimizer based on Proportional Distribution and 
Jump Improved Operation (PDJI-MOPSO). The proposed PDJI-
MOPSO maintains diversity of newly found non-dominated 
solutions via proportional distribution and obtains extensive 
exploitation of the MOPSO algorithm in the archive with the 
jump improved operation to enhance the solution searching 
abilities of particles [49]. 

a) Increasing the diversity of the non-dominated 
solutions in the archive

Cheng, et al. proposed a hybrid MOPSO with local searc h  
strategy (LOPMOPSO), which consists of the quadratic 
approximation algorithm and the exterior penalty function 
method. The dynamic archive maintenance strategy is 
applied to improve the diversity of solutions, and the 
experimental results show that the proposed LOPMOPSO is 
highly competitive in convergence speed and generates a set 
of non-dominated solutions with good diversity [50]. Ali, et 
al. proposed an Attributed Multi-objective Comprehensive 
Learning Particle Swarm Optimizer (A-MOCLPSO), which 
optimizes the total security cos t and the residual damage. The 
experimental results show that the proposed A-MOCLPSO 
algorithm can provide diverse solutions for the problem 
and outperform the previous solutions obtained by other 
comparable algorithms [51].

In order to effectively deal with the multimodal and 
complex MOPs, a group of non-dominated solutions with good 
distribution can be obtained by changing the information 
sharing mode between particles in the decision and objective 
space, and great progress has been made in solving the 
distribution of decision space. Given multimodal problems 
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and MOPs in a noisy environment, it is necessary to consider 
the extension of the MOPSO algorithm and analyze the MS 
metric.

B. Convergence metrics

Convergence metrics measure the degree of proximity, 
which is the distance between the non-dominated solutions 
and the Pareto Front. 

The Generational Distance (GD) metric: The essence of 
GD is to calculate the distance between the non-dominated 
solution in the archive and the true Pareto Front, which is 
deϐined as:

1/
1

( )
GD( , ) ,

s q q
ii

d
S P

S
 

                      (11)

where a ϐinite number of the non-dominated solutions 
that approximate the true Pareto Front is called P, the optimal 
non-dominated solution archive obtained by the evolutionary 
algorithms is termed as S. |S| is the number of non-dominated 
solutions in the archive. min ( ) ( ) , .i i jp P

d F s F p s S


  

  

and q=2, di is the minimum Euclidean distance between the 
solution s


∈S and the solutions in P. In essence, GD can reϐlect 

the convergence performance of the MOPSO algorithm. 

GD illustrates the convergence ability of the algorithm by 
measuring the closeness between the Pareto optimal front 
and the evolved Pareto front. Thus, a lower value of GD shows 
that the evolved Pareto front is closer to the Pareto optimal 
front. It should be clear that a value of indicates that all the 
elements generated are in the Pareto optimal set. Therefore, 
any other value will indicate how “far” we are from the global 
Pareto front of our problem. This metric addresses the ϐirst 
issue from the list previously provided. 

(a) The inertia weight adjustment mechanisms improved 
the local exploit a tion ability.

Tang, et al. introduced a self-adaptive PSO (SAPSO) based 
on a parameter selection principle to guarantee convergence 
when handling the MOPs. To gain a well-distributed Pareto 
front, an external repository was designed to keep the non-
dominated solutions with good convergence. The statistical 
results of GD have illustrated that the proposed SAPSO can 
obtain a set of non-dominated solutions close to the Pareto 
Front [52].

(b) Speeding up the convergence by the external archive

Zhu, et al. introduced a novel external archive-guided 
MOPSO (AgMOPSO) algo r ithm, where the leaders for velocity 
updating and po s i tion updating are selected from the external 
archive [53]. In AgMOPSO, MOPs are transformed into a set 
of sub-problems, and each particle is allocated to optimize 
a sub-problem. Meanwhile, an immune-based evolutionary 
strategy of the external archive increased the convergence 
to the Pareto Front and accelerated the rate. Different from 

the existing algorithms, the proposed AgMOPSO algorithm 
is devoted to exploiting the useful information fully from the 
external archive to enhance the convergence performance. 
In [33], a novel parallel cell coordinate system (PCCS) is 
proposed to accelerate the convergence of MOPSO by assessing 
the evolutionary environment. The PCCS has transformed 
the multi-objective functions into two-dimensional space, 
which can accurately grasp the distribution of the non-
dominated solutions in high-dimensional space. An additional 
experiment for density estimation in MOPSO illustrates that 
the performance of PCCS is superior to that of adaptive grid 
and crowding distance in terms of convergence and diversity. 

Wang, et al. developed a multi-objective optimization 
algorithm with the preference order ranking of the non-
dominated solutions in the archive [54]. And the experimental 
results indicated that the proposed algorithm improves the 
exploratory ability of MOPSO and converges to the Pareto 
Front effectively.

(c) Selecting proper g-Best and p-Best

Alvarez, et al. developed an MOPSO algorithm using 
exclusively on   dominance for se l ecting guides from the 
solution archive to ϐind a more feasible region and explore 
regions close to the boundaries. The results demonstrate 
that the proposed algorithm can shrink the velocity of the 
particles, and the particles can ϐly to the boundary of the true 
Pareto Front, which has a good GD value [55].

Wang, et al. developed a new ranking scheme based on 
equilibrium strategy for MOPSO algorithm to select the g-Best 
in the archive, and the preference ordering is used to decrease 
the selective pressure, especially when the number of 
objectives is very large. The experimental results indicate that 
the proposed MOPSO algorithm produces better convergence 
performance [56].

(d) Adjusting the population size

A multiple-swarm MOPSO algorithm, named dynamic 
multiple swarms in MOPSO, is proposed in which the number 
of swarms is dynamic in the searching process. Yen, et al. 
proposed a dynamic multiple swarms in MOPSO (DSMOPSO) 
algorithm to   manage the communication within a swarm 
and among swarms, and an objective space compression 
and expansion strategy to progressively exploit the objective 
space during the search process [57]. The proposed DSMOPSO 
algorithm occasionally exhibits slower search progression, 
 w hich may render a larger computational cost than other 
selected MOPSOs. 

In order to solve the application problem with the 
increasing complexity and dimensionality, Goh, et al. 
developed an MOPSO algorithm with a competitive and 
cooperative co-evolutionary approach, which divides the 
particle swarms into several sub-swarms [58]. Simulation 
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results demonstrated that the proposed MOPSO algorithm can 
retain the fast convergence speed to the Pareto Front with a 
good GD value.

(e) Hybrid MOPSO algorithms

In order to increase the convergence accuracy and the 
speed of the MOPSO algorithm, MOPSO is combined with 
other intelligent algorithms. In [59], an efϐicient MOPSO 
algorithm based on the strength Pareto approach from EA was 
developed. The experimental results show that the proposed 
MOPSO algorithm can converge to the Pareto Front and has 
a slower convergence time than SPEA2 and a competitive 
MOPSO algorithm. MOPSO can also combine with other 
global optimization algorithms. The evaluation of GD index 
is relatively simple, mainly considering the distance between 
all non-dominated solutions in the external archive and the 
frontier, but it cannot provide diversity information.

C. The evaluation of GD metric is relatively simple, which 
mainly considers the distance between all non-dominated 
solutions and the Pareto front in the archive, but it can not 
provide diversity. Because the calculation of the GD metric 
needs the real Pareto front, but the actual problem often has 
no real Pareto front, so its use will be limited. However, for the 
multi-objective optimization problem of the known front, it is 
suitable for MOPs with strict convergence when handling the 
actual problems.

C. Convergence-diversity metrics

The aim of optimizing MOPs is to obtain a set of uniformly 
distributed non-dominated solutions that is close to the true 
Pareto Front. In order to evaluate the optimal solutions in the 
archive, two performance metrics are applied to measure the 
MOPSO algorithm, which can reϐlect both the convergence and 
diversity performance.

The inverted generational distance (IGD) metric: IGD is 
used to compare the dispar i ty between the non-dominated 
solutions by the optimization algorithm and the true Front, 
which is deϐined as:
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where a ϐinite number of the non-dominated solutions 
that approximate the true Pareto Front is called P, the optimal 
non-dominated solution archive obtained by the evolutionary 
algorithms is termed as S. |P| is the number of non-dominated 
solutions in the Pareto Front. min ( ) ( ) .i i is S
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and q=2, di is the minimum Euclidean distance between the 
solution .s s

  and the solutions p p


. In particular, the 
smaller value of IGD means that the non-dominated solutions 
in the archive are closer to the true Pareto Front. 

IGD performs the near calculation similar to that done by 
GD. The difference is that GD calculates the distance of each 
solution in optimal solutions to the Pareto Front, while IGD 

calculates the distance of each solution in the Pareto Front 
to optimal solutions. In this indicator, both convergence and 
diversity are taken into consideration. A lower value of IGD 
implies that the algorithm has better performance.

The hypervolume (HV) metric: HV is another popular 
convergence–diversity metric to evaluate the volume of 
the non-dominated solutions in the archive concerning the 
reference set. 

1

HV( , ) ( ),
S

i
i

S R volume v

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where R is the reference set. is


∈S, a hypercube vi is 
formed by the reference set and the solution as the diagonal 
corners of the hypercube. When the non-dominated solutions 
in the archive are closer to the Pareto Front, a larger HV can 
demonstrate that solutions in the archive are more uniformly 
distributed in the objective space.

In order to assess the performance among different 
compared algorithms, two performance measures, i.e., IGD 
and HV, were adopted here. It is believed that these two 
performance indicators can not only account for convergence, 
but also the distribution of ϐinal solutions.

b) Adjusting the population size

Leong, et al. presented a dynamic population multiple-
swarm MOPSO algorithm to improve the diversity within each 
swarm, which included the integration of a dynamic population 
strategy and an adaptive local archive. The experimental 
results indicated that the proposed MOPSO algorithm shows 
competitive results with improved diversity and convergence 
and demands less computational cost [34].

In actual industrial problems, there are many many-
objective problems (MaOP) and optimization algorithms 
aimed at searching for a set of uniformly distributed solutions 
that closely approximate the Pareto Front. In [60], Carvalho, 
et al. proposed a many-objective technique named control 
of dominance area of solutions (CD A S ), which is used on 
three different many-objective particle swarm optimization 
algorithms. Most previous studies only deal with rank-based 
algorithms. The proposed CDAS technique for the MOPSO 
algorithm that are based on the cooperation of particles, 
instead of a competitive method. Wang, et al. proposed a 
hybrid evolutionary algorithm by the MOEA and MOPSO to 
balance t h e   exploitation and exploration of the particles. The 
whole population is divided into several sub-populations 
to solve the scalar sub-problems from an MOP [61]. The 
comprehensive experiments with respect to IGD metric and 
HV metric can indicate that the performance of the proposed 
method is better than other comparable MOEAs.

c) Increasing the diversity of the non-dominated 
solutions in the archive

In general, the MOPSO algorithm will scale poorly when 
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the number of objectives is more than three. To solve this 
problem, Britto, et al. proposed a novel archiving MOPSO 
algorithm to explore more regions of the Pareto Front which 
applying the reference point to update the archive [62]. The 
empirical analysis of the proposed MOPSO algorithm veriϐied 
the distribution of the solutions and experimental results, 
showing that the solutions generated by this algorithm could 
be very close to the reference point. 

d) The inertia weight adjustment mechanisms improved 
the global exploration ability

Sorkhabi, et al. presented an efϐicient approach to 
constraint handling in MOPSO, and the whole population is 
divided into two non-overlapping populations, which include 
the infeasible particles and feasible particles. Meanwhile, 
the leader is selected from the feasible population. The  
experimental results demonstrated that the proposed 
algorithm is highly competitive in solving the MOPs. Meza, 
et al. proposed a multi-objective vortex particle swarm 
optimization (MOVPSO) based on the emulation of the 
particles. The qualitative results show that the MOVPSO 
algorithm can have a better performance compared to the 
traditional MOPSO algorithm [35]. Zhang, et al. proposed a 
competitive MOPSO, where the particles are updated on the 
basis of the pairwise competitions performed in the current 
swarm at each generation. Experimental results demonstrate 
the promising performance of the proposed algorithm in terms 
of both optimization quality and convergence speed [63]. Lin, 
et al. proposed an MOPSO with multiple search strategies 
(MMOPSO) to tackle complex MOPs, where a decomposition 
approach is exploited for transforming the MOPs. Two search 
strategies are used to update the velocity and position of each 
particle [64].

The factors that affect the IGD and HV metrics in MOPSO:

1) Changing the storage form of the non-dominated 
solution in the knowledge base, 2) Adjusting the ϐlight 
parameters of the particle, and 3) Increasing the mutation of 
the particle. 4) Adjusting the population size adaptively. In 
order to improve the diversity and convergence of MOPSO, 
a MOPSO with dynamic population size is used to improve 
the diversity of each group, including a dynamic population 
strategy and an integration of an adaptive local archive, which 
can improve the diversity and convergence.

IV. Th eoretical analysis of MOPSO
A. Convergence analysis of MOPSO

Theoretical and empirical analysis of the properties   o f 
evolutionary algorithms is very  i mportant to understand their 
searching behaviors and to develop more efϐicient algorithms. 
Fang, et al. proposed a quantum-behaved particle swarm 
optimization (QPSO) algorithm and discussed the convergence 
of QPSO within the framework of random algorithms’ global 
convergence theorem [65]. In [66], Tian, et al. presented 

the convergence analysis with construction coefϐicient, 
limit, differential equation, Z transformation, and matrix. 
Meanwhile, if the condition in eq.(14) is met, the position of a 
single particle will tend to be (φ1pi+φ2pg)/(φ1+φ2).
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The convergence analysis of MOPSO contains the theory of 
probability principle and Lyapunov stability theorem. 

In [67], Sun, et al. investigated in detail the convergence 
of the MOPSO algorithm on a probabilistic metric space and 
proved that the MOPSO algorithm is a form of contraction 
mapping and can converge to the global optimum. This is the 
ϐirst time that the theory of probabilistic metric spaces has 
been employed to analyze a stochastic optimization algorithm. 

Then, Kadirkamanathan, et al. [68] proved a more 
generalized stability analysis of the particle dynamics using 
the Lyapunov stability theorem. Moreover, Van, et al. proved 
that particles could converge to a stable point [69]. In [70], the 
swarm state sequence is deϐined and its Markov properties 
are examined according to the theory of MOPSO. Two closed 
sets, the optimal particle state set and optimal swarm state 
set, are then obtained. In the previous work, several variants 
of the MOPSO algorithm have been proposed to handle 
the MOPs based on the concept and the Pareto optimality. 
However, a fairly small number of scholars have analyzed and 
proved the convergence of their improved MOPSO algorithms. 
In [71], Chakraborty, et al. presented the ϐirst, simple analysis 
of the general Pareto-based MOPSO a n d found cond i tions 
on its most important control parameters (the inertia factor 
and acceleration coefϐicients) that govern the convergence 
behavior of the algorithm to the optimal Pareto front in the 
objective function space.

In [72], Li, et al. presented a novel MOPSO algorithm based 
on the global margin ranking (GMR) strategy, which dep loys 
the position information of individuals in objective space to 
gain the margin of dominance throughout the population. 
In order to ensure the convergence of the proposed MOPSO 
algorithm, it gives a convergence analysis and ranking 
efϐiciency analysis to verify the effectiveness.

MOPSO has been accepted widely as a potential global 
optimization algorithm, but there is still great space for the 
research of the algorithm itself [73]. So far, the mathematical 
proofs of convergence, convergent velocity, parameter 
selection, and robustness have not been proposed perfectly 
on MOPSO. Hence, how to study and analyze MOPSO by the 
ideas of limit, probability, evolution, and topology to reϐlect 
the mechanism of how MOPSO works, which is also a highly 
desired subject that should be paid much attention to by 
MOPSO researchers.

B. Timing complexity of MOPSO

The time complexity analysis of MOPSO is a signiϐicant 
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issue to apply to differ ent ϐields. The commonly used 
computation methods of time complexity can be summed up 
as the summation and recursion method. In [37], Moubayed, 
et al. presented that the time complexity was calculated by the 
proposed D2MOPSO, that the global set N and the population 
size K. Since K is equal to N, it follows from this analysis that 
D2MOPSO has similar computational complexity to the other 
comparable algorithms. D2MOPSO uses the e archive (of size 
L ≤ N), which is updated on each iteration. In order to select 
the global leader for each particle, all solutions in the external 
archive are checked for the best aggregation value. The 
complexity would then be O(2LN) O(N). When an external 
archive (of size K > N) is used, the complexity becomes O(KN 
+2LN)  O(KN). 

In [20], Coello, et al. investigated that the adaptive grid 
was lower than niching [i.e., O(N2)]. In [36], Raquel, et al. 
investigate the time complexity in MOPSO with the original 
crowding dist a nce. If the objectives are M and population size 
is N, the overall complexity of MOPSO-CD will be O(MN2). 

In addition, the convergence time of particle swarm 
optimization is analyzed on the facet of particle interaction 
[74], in which the theoretical analysis is conducted on the 
social-only model of MOPSO instead of on common models 
in practice. The theoretical results reveal the relationship 
between the convergence time and the level of convergence 
as well as the relationship between the convergence time and 
the swarm size.

In total, the major relation of the key parameters, the 
performance metrics, and the theoretical analysis of MOPSO 
is shown in Figure 4.

V. Potential future research directions of MOPSO
Although there has been a lot of research work on 

the theoretical analysis, more problems often need to be 
considered according to the practical applications. Based on 

the operational principle of MOPSO, several potential future 
research directions in the area of MOPSO have been listed as 
follows.

A. The trade-off between rapidity and diversity

Rapidity is a pursuit of algorithms in solving an MOP. In 
the practical application, it is usually necessary to consider 
both rapidity and diversity at the same time. At present, 
many researchers have proposed several approaches to 
decrease the time complexity and improve the diversity of 
MOPSO, but it is so hard to reach the desirable objectives. In 
[45], a local search enhanced MOPSO is used for scheduling 
textile production processes, where the  time complexity and 
diversity are considered comprehensively. As more and more 
practical cases in solving the MOPs are being studied, the 
rapidity and diversity need to be paid attention to and studied 
in future work.

B. Dynamic multi-objective optimization problems

One of the most major distinguishing features of dynamic 
multi-objective optimization problems (DMOPs) is that the 
objectives are time-varying. At present, the existing MOPSO 
algorithms cannot obtain satisfactory optimization effects 
when handling DMOPs. Therefore, it is urgent to study an 
MOPSO algorithm that can solve the dynamic multi-objective 
problem. In [75], Jiang, et al. presented a transfer learning 
mechanism and incorporated the proposed approach into the 
development of an MOPSO algorithm to solve the complex 
DMOPs. The experimental results conϐirm the effectiveness 
of the proposed design for DMOPs. Although there are 
many presented MOPSO algorithms, few improved MOPSO 
algorithms are for their characteristics of optimization 
process. 

Most scholars verify the MOPSO algorithm through 
the static multi-objective optimization problem, and a few 
scholars have studied the application of the MOPSO algorithm 
in the complex dynamic process.

C. The many-objective large-scale optimization

Traditional research about MOPSO algorithm focuses on 
MOPs with small numbers of variables and fewer than four 
objectives. However, with the complexity of the big data 
era, more and more multi-objective optimization problems 
will exceed three objectives. CAO, et al. presented many-
objective large-scale optimization problems (MaOLSOPs). We 
need to explore thoroughly parallel attributes of the particle 
swarm and design the novel PSO algorithms according to the 
characteristics of distributed parallel computation [76]. In the 
process of calculation, when the objective number is large and 
the number of variables is huge, the optimization process will 
be extremely time-consuming [77-81]. Therefore, it is very 
necessary for research to be effective in addition to large-scale 
multi-objective problems.
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Figure 4: The major relation of the key parameters, the performance 
metrics, and the theoretical analysis of MOPSO.
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D. More theoretical guarantee

Although some scholars have conducted some theoretical 
research on the MOPSO algorithm, it has been shown that the 
MOPSO algorithm is effective for the practical multi-objective 
optimization problem, but a strict mathematical proof of the 
convergence of the MOPSO algorithm is not given. In [71], 
Chakraborty, et al. presented the stability and convergence 
properties of the MOPSO algorithm, which includes the analysis 
of the general Pareto-based MOPSO and ϐinds conditions on 
its most important control parameters (the inertia factor and 
acceleration coefϐicients) [82]. However, the above methods 
need too many hypothetical prerequisites. Therefore, the 
theoretical proofs of the MOPSO algorithm are still a shortage, 
and further research needs to be conducted [83-86].

E. Stagnation of particles in the last stage

Although during the last ten years, research on and with 
MOPSO has reached an improvement state, there are still many 
open problems, and new application areas are continually 
emerging for the MOPSO algorithm [87-90]. Below, we unfold 
some important future directions of research in the area 
of MOPSO. Given the problem of parameter adjustment in 
the MOPSO algorithm, how to judge the current population 
evolution environment by a comprehensive evaluation index 
and make a uniϐied adjustment to the parameters of the 
MOPSO algorithm [91].

F. Self-organization MOPSO

In the process of optimizing the MOPSO algorithm, how to 
realize the optimization method of the whole particle swarm 
optimization and ϐind the optimal solution set closest to the 
real Pareto frontier are two crucial problems [92-94]. In 
particular, a population structure is the foundation of a swarm, 
and different structures may drive the swarm to behave 
differently. Through the analysis of particle behavior in a 
search process, dynamic population size strategies are used. 
In [95-97], an adaptive MOPSO based on clustering considers 
the population topology and individual behavior control 
together to balance local and global search in an optimization 
process. Meanwhile, it separates the swarm dynamically in the 
searching process to connect the subpopulation clusters and 
uses a ring neighborhood topology to share the information 
among these clusters. Though many approaches have been 
proposed, one of the important questions is whether there 
are other effective evaluation methods to evaluate the 
effectiveness of the individual particles. Therefore, the self-
organization MOPSO algorithm needs to be studied in future 
work.

VI. Conclusion
In conclusion, the MOPSO algorithm has emerged as a 

potent tool for handling complex multi-objective optimization 
problems within a competitive-cooperative framework. This 
review paper has provided a comprehensive survey of MOPSO, 

encompassing its basic principles, key parameters, advanced 
methods, theoretical analyses, and performance metrics. The 
analysis of parameters inϐluencing convergence and diversity 
performance has offered insights into the searching behavior 
of particles in MOPSO. The discussion on advanced MOPSO 
methods has highlighted various strategies to enhance 
the algorithm’s efϐiciency, such as selecting proper g-Best 
and p-Best solutions, employing hybrid approaches with 
other intelligent algorithms, and adjusting population sizes 
dynamically. The theoretical analysis section has delved into 
convergence and timing complexity of MOPSO, shedding light 
on its mathematical foundations and practical implications.

Despite the signiϐicant progress in MOPSO research over the 
last two decades, several potential future research directions 
have been identiϐied. These include exploring the application 
of MOPSO in complex dynamic processes, addressing the 
many-objective large-scale optimization challenges, providing 
more theoretical guarantees, and overcoming stagnation 
issues in particle evolution. In particular, there is a need for 
uniϐied parameter adjustment methods, self-organization 
capabilities, and real-world applications of MOPSO to further 
solidify its position as a leading algorithm in multi-objective 
optimization.

Overall, this review paper has aimed to provide a 
comprehensive understanding of MOPSO’s developments, 
achievements, and future directions, fostering further 
research and advancements in this promising ϐield.
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