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Abstract

Generative Adversarial Networks (GANs) have emerged as a transformative approach 
for synthetic data generation in deep learning, addressing critical challenges such as 
data scarcity, privacy concerns, and algorithmic bias. This synthesis review provides a 
comprehensive analysis of GANs’ role in creating high-fi delity synthetic data across 
diverse domains, including healthcare, fi nance, computer vision, and natural language 
processing. By leveraging an adversarial training process involving a generator and 
discriminator, GANs effectively capture intricate data distributions, generating realistic 
synthetic samples that enhance model robustness and generalization. The review 
explores foundational GAN principles, advanced architectures like DCGANs, cGANs, 
CycleGANs, and TimeGANs, and their applications in generating medical images, fi nancial 
time-series, and tabular data. It also discusses the advantages of GANs, such as privacy 
preservation and cost-effi ciency, alongside limitations, including training instability, 
mode collapse, and the lack of standardized evaluation metrics. Comparative analysis 
with other methods like Variational Autoencoders and traditional statistical approaches 
highlights GANs’ superior realism for complex data types. Future research directions 
include improving training stability, developing robust evaluation benchmarks, and 
integrating privacy-enhancing techniques. This review underscores GANs’ potential to 
revolutionize deep learning applications while emphasizing the need for ethical guidelines 
to mitigate misuse risks.

data addresses data shortages, mitigates privacy concerns, 
and reduces biases [1,3]. It can be scaled and tailored for 
balanced class representation, making it especially useful for 
handling imbalanced datasets and simulating rare or complex 
scenarios [4]. These capabilities enhance model robustness 
and generalization in deep learning applications [5].

Generative Adversarial Networks (GANs) have become a 
cornerstone in synthetic data generation, gaining widespread 
recognition for their effectiveness [6]. GANs utilize an 
adversarial training framework involving two neural 
networks: a generator and a discriminator [7]. The generator 
learns the real data’s underlying distribution to create synthetic 
samples that closely mimic it, while the discriminator works 
to distinguish real data from the generated samples [8]. This 
adversarial interplay, resembling a zero-sum game, pushes the 
generator to continuously improve, producing increasingly 
realistic synthetic data. The iterative feedback loop between 
the two networks ensures reϐined outputs, capturing complex 
data distributions with high ϐidelity [9,10].

Introduction
The rapid growth of deep learning across various sectors 

has underscored the critical need for extensive, high-quality 
datasets to achieve top-tier model performance (LeCun, Bengio, 
& Hinton, 2015). These data-intensive models necessitate 
vast amounts of information to identify complex patterns and 
generalize effectively to new data [1]. However, obtaining real-
world data is fraught with challenges, including data scarcity, 
high costs, and time-intensive processes for collection and 
annotation (Rolnick, et al. 2019) [2]. Furthermore, stringent 
privacy regulations governing sensitive data—such as 
personal, health, and ϐinancial records—along with legal and 
ethical restrictions, pose signiϐicant barriers (Veale & Binns, 
2017). Real-world datasets may also contain algorithmic 
biases, further complicating their use (Barocas, Hardt, & 
Narayanan, 2019).

Synthetic data has become a powerful solution to address 
these challenges. By generating artiϐicial datasets that replicate 
the statistical characteristics of real-world data, synthetic 
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GANs outperform traditional generative models in 
generating synthetic data that closely mimics real-world data 
[11,12]. A key advantage is that the generator does not directly 
access the original data during training, which reduces the risk 
of data disclosure and potential privacy breaches [13]. This 
makes GANs particularly valuable for applications requiring 
privacy preservation while maintaining the quality and utility 
of synthetic datasets [6].

This review consolidates current research on utilizing 
GANs for synthetic data generation in deep learning. It 
explores GANs’ core principles, applications across various 
ϐields, and advanced architectural innovations. The review 
compares GANs’ strengths and limitations with other 
synthetic data generation methods and discusses quality 
assessment techniques. It provides a comprehensive overview 
for researchers and practitioners, highlighting challenges and 
future research directions in this rapidly evolving ϐield.

Generative adversarial networks for synthetic 
data generation: A foundational overview

A GAN comprises two competing neural networks: the 
generator and the discriminator, both typically deep neural 
networks trained using backpropagation as shown in Figure 1
[11]. The generator learns the probability distribution of 
real-world data to produce synthetic samples that mimic 
the original data [14]. It takes a random noise vector, 
typically drawn from a Gaussian or uniform distribution, and 
transforms it into synthetic outputs such as images, tabular 
data, or time-series sequences [15]. The generator effectively 
learns a complex, non-linear mapping from a low-dimensional 
latent space to a higher-dimensional data space, generating 
new instances that are statistically similar to the training data 
[6].

In contrast, the discriminator acts as a binary classiϐier, 
distinguishing real data samples from synthetic ones 
produced by the generator (Wang, et al. 2025). It outputs a 
probability score indicating whether an input sample is real 
or fake, assigning high probabilities to real samples and low 
ones to synthetic ones [1]. This classiϐication provides critical 
feedback to the generator, enabling it to reϐine its outputs and 
improve realism through the adversarial learning process [9].

GAN training is a competitive, zero-sum game. The generator 
aims to produce samples that fool the discriminator, while 
the discriminator strives to accurately classify real and fake 
samples [6]. Both networks are trained simultaneously in an 
iterative process: the discriminator improves its classiϐication, 
and the generator reϐines its outputs to evade detection [16]. 
This adversarial loop continues until equilibrium, where the 
discriminator cannot reliably distinguish synthetic samples 
from real data, indicating the generator has approximated the 
true data distribution effectively [9,17].

The adversarial training process in GANs can be formally 
represented as a minimax optimization problem [7]. The 
objective function that governs this process typically involves 
the discriminator aiming to maximize the expected log-
likelihood of correctly identifying real data and correctly 
identifying fake data (as fake). Simultaneously, the generator 
strives to minimize the expected log-likelihood of the 
discriminator correctly identifying its generated data as fake 
[11]. Mathematically, this can be expressed as:

  ( ) ( )minGmaxDV D,  G   
data zX P X Z p ZE E  

Where:

• D(x) represents the discriminator’s output (the 
probability that x is real) for a real data sample x drawn 
from the real data distribution. pdata (x).

• G(z) represents the generator’s output (a synthetic 
data sample) for a random noise vector z drawn from a 
noise distribution. p z(z).

• D(G(z)) represents the discriminator’s output for 
the synthetic sample G(z) (the probability that the 
synthetic sample is real).

• E denotes the expected value.

The discriminator seeks to maximize this value function by 
correctly classifying both real and fake data. The generator, 
on the other hand, aims to minimize this value function by 
producing synthetic data G(z) that the discriminator is likely 
to classify as real (i.e., maximizing D(G(z)) or, equivalently, 
minimizing 1−D(G(z))). The equilibrium of this minimax game 
signiϐies that the generator has learned to produce synthetic 
data that is statistically indistinguishable from the real data 
[7,17].

Applications across diverse domains

The impact of GANs is expanding rapidly, transforming 
industries such as healthcare, ϐinance, computer vision, and 
natural language processing. In healthcare, GANs are used 
to generate synthetic medical images, such as MRI and CT 
scans, assisting in diagnosis, treatment planning, and data 
augmentation for deep learning models [18,19]. They also 
enable data anonymization, addressing privacy concerns, with 
applications in brain imaging, cardiology, and oncology. For Figure 1: Generative Adversarial Networks general structure.
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example, models like medGAN generate synthetic electronic 
health records to mitigate data scarcity and preserve patient 
conϐidentiality [20].

In ϐinance, GANs produce synthetic time-series data such 
as stock prices for fraud detection, forecasting, and trading 
strategy development [8]. TimeGAN is particularly effective at 
capturing temporal dependencies in ϐinancial data, enhancing 
risk modeling and algorithmic trading performance [21]. 
Similarly, FinGAN demonstrates GANs’ capability in modeling 
complex ϐinancial distributions, supporting regulatory and 
market behavior analysis [22].

Computer vision has been a primary driver of GAN 
advancement, with applications in synthetic image and 
video generation, 3D model creation, and data augmentation 
for classiϐication and detection tasks [11,23]. GANs also 
facilitate image-to-image translation (e.g., changing weather 
or season), super-resolution, and artistic generation such as 
anime character synthesis or photo restoration [12].

In NLP, while GANs are less prevalent than in vision, they 
generate synthetic text for tasks like text summarization and 
translation and support creative applications like poetry 
or story generation [24]. Though large language models 
dominate current NLP, GANs contribute to data augmentation 
and domain-speciϐic text synthesis [24].

Beyond these, GANs are gaining traction in cybersecurity, 
fraud detection, and supply chain modeling. They generate 
synthetic fraudulent transactions or network trafϐic to improve 
model robustness and support imbalanced data training [25]. 
Models like table-GAN [26] and CTAB-GAN [27] highlight 
GANs’ ϐlexibility in structured data applications, underscoring 
their transformative potential across diverse ϐields.

Advanced GAN architectures and methodologies

Since the introduction of the original GAN framework, 
advanced architectures have been developed to overcome its 
limitations and enhance synthetic data generation [10]. These 
innovations address diverse data types and applications, 
improving the quality and utility of generated data [18]. 

Deep Convolutional GANs (DCGANs) marked a signiϐicant 
advancement by incorporating convolutional neural networks 
(CNNs) into the generator and discriminator [28]. This 
enabled DCGANs to synthesize realistic images by leveraging 
CNNs’ ability to learn hierarchical spatial features, as seen 
in applications like generating fashion images from the 
Fashion MNIST dataset [23]. DCGANs set the stage for more 
sophisticated image synthesis models [29].

Conditional GANs (cGANs) introduced controlled 
generation by conditioning the process on supplementary 
information, such as class labels or textual descriptions [30]. 
This allows targeted data synthesis, particularly in healthcare, 
where cGANs generate medical images for speciϐic pathologies 

[31]. CTAB-GAN, a conditional tabular GAN, applies this 
principle to structured data, enhancing realism in synthetic 
tabular datasets [32].

CycleGANs facilitate unpaired image-to-image translation, 
learning mappings between domains without direct 
correspondences. Using cycle consistency loss, CycleGANs 
ensure reversible translations [33], proving valuable in 
healthcare for tasks like transforming MRI contrasts without 
paired data, showcasing GANs’ ability to handle complex data 
mappings [34].

TimeGANs address time-series data generation by 
capturing temporal dependencies through a combination of 
supervised and unsupervised objectives. Applied to ϐinancial 
data like stock prices, TimeGAN outperforms alternatives by 
modeling realistic temporal dynamics, highlighting the need 
for specialized GAN designs for sequential data [21].

Tabular GANs address the challenges of structured data, 
which mixes numerical and categorical variables. Models 
like medGAN, CTAB-GAN, and table-GAN enhance synthetic 
tabular data generation. MedGAN uses an autoencoder-GAN 
hybrid for electronic health records [20], while CTAB-GAN 
and table-GAN incorporate classiϐiers to maintain semantic 
integrity [35]. Table-GAN employs hinge loss and classiϐication 
loss to balance privacy and compatibility, demonstrating 
effectiveness in generating realistic tabular data (Xu, et al. 
2019).

Training GANs requires careful optimization to overcome 
instability, vanishing gradients, and mode collapse. Strategies 
like hinge loss, gradient penalties, and hyperparameter 
tuning—such as adjusting epochs, batch sizes, and learning 
rates in FinGAN—stabilize training and improve outcomes 
(Xiaopeng, et al. 2020). For instance, FinGAN’s adjustments 
enhanced its ability to capture complex ϐinancial patterns [36].

These advancements—DCGANs, cGANs, CycleGANs, 
TimeGANs, and tabular GANs—demonstrate the versatility of 
GANs in generating high-quality synthetic data across images, 
time-series, and structured datasets, with careful training 
ensuring their effectiveness in diverse applications [9] 
(Table 1).

Advantages and benefi ts of using GANs for 
synthetic data

GANs provide substantial advantages in synthetic 
data generation across multiple domains. A key beneϐit is 
addressing data scarcity by creating vast amounts of realistic 
synthetic data, augmenting limited real-world datasets [37]. 
This is critical in ϐields like rare disease research or specialized 
industries where data collection is costly or challenging [20]. 
By generating diverse samples, GANs facilitate the training 
of robust deep learning models, mitigating overϐitting and 
enhancing generalization [7].
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GANs also mitigate privacy risks by producing synthetic 
data that preserves the statistical properties of original 
datasets without exposing sensitive information. This 
facilitates data sharing and collaboration while complying 
with regulations like GDPR and HIPAA (Jordon, et al. 2019). 
Models like table-GAN are designed to synthesize tabular 
data, minimizing disclosure risks, which is vital in sensitive 
sectors such as healthcare and ϐinance [26].

Moreover, GANs assist in addressing algorithmic bias in 
datasets. By generating synthetic data to balance imbalanced 
classes or represent underrepresented groups, GANs 
support the development of fairer machine learning models 
(Xu, et al. 2020). This is crucial for preventing AI systems 
from perpetuating societal biases, ensuring more equitable 
outcomes.

Synthetic data from GANs enhances model robustness 
and generalization by exposing models to a wider range of 
scenarios, including rare or complex cases that are not present 
in real data. This makes models more resilient to variations and 
noise, improving performance on unseen data. For example, 
GANs can simulate challenging conditions, enabling models to 
handle diverse real-world inputs effectively (Shmelkov, et al. 
2018).

Finally, GANs offer cost and time efϐiciency compared 
to collecting and processing real-world data. Once trained, 
GANs can quickly generate large volumes of synthetic data, 
accelerating the development and deployment of deep 
learning models (Torϐi, et al. 2020). This efϐiciency, combined 
with their ability to overcome data limitations, privacy 
concerns, and biases, makes GANs a transformative tool for 
advancing AI applications.

Challenges, limitations and considerations

Despite the many advantages of using GANs for synthetic 
data generation, various challenges, limitations, and 
considerations must be carefully addressed. A signiϐicant issue 
is the instability of the training process, often necessitating 
extensive hyperparameter tuning and sophisticated 
architectural design to achieve convergence [38]. Mode 

collapse, where the generator produces limited sample variety, 
further complicates capturing the full diversity of real data 
and diminishes the utility of synthetic data (Srivastava, et al. 
2017). Advanced training techniques and diligent monitoring 
are crucial to mitigate these issues.

Another limitation is the lack of standardized evaluation 
metrics to assess synthetic data quality and utility. Existing 
metrics often focus on speciϐic aspects, like visual ϐidelity, but 
fail to capture the data’s usefulness for downstream tasks 
or preservation of complex relationships, hindering model 
comparisons (Borji, 2019). The high computational cost of 
training GANs, requiring powerful GPUs and signiϐicant time, 
poses a barrier for those with limited resources (Lucic, et al. 
2018).

Privacy concerns arise when generators memorize training 
data patterns, risking information leakage. Balancing privacy 
and utility requires ongoing research into privacy-preserving 
techniques (Chen, et al. 2020). Additionally, the ability of 
GANs to create realistic synthetic data raises ethical concerns, 
including the potential for deepfakes and misinformation 
(Westerlund, 2019). Addressing these risks demands ethical 
guidelines, responsible data practices, and robust detection 
mechanisms to maintain trust in information sources.

GANs in comparison to other synthetic data 
generation techniques

Generative Adversarial Networks are not the only method 
for synthetic data generation; other techniques like Variational 
Autoencoders (VAEs), Large Language Models (LLMs), and 
traditional statistical methods also play signiϐicant roles. 
VAEs, which encode data into a probabilistic latent space 
and decode it to generate new samples, offer greater training 
stability than GANs but often produce less realistic outputs, 
especially for complex data like images [39]. Both GAN-based 
(e.g., CTGAN) and VAE-based (e.g., TVAE) models are popular 
for tabular data [35].

LLMs excel in generating coherent, contextually relevant 
synthetic text, leveraging their training on vast text corpora, 
but are less versatile for structured data like images or tables 

Table 1: Comparative Table of GAN Architectures for Synthetic Data Generation.
Architecture Key Features Applications Limitations

DCGAN Incorporation of CNNs in the generator and 
discriminator. Image synthesis, feature learning. Can still suffer from training instability and mode collapse.

cGAN Generation conditioned on additional input 
(e.g., labels, text).

Controlled data generation, image editing, and 
text-to-image synthesis. Requires labeled or conditional data.

CycleGAN Unpaired image-to-image translation using cycle 
consistency loss.

Style transfer, domain adaptation, image 
enhancement. It can sometimes produce geometrically inconsistent results.

TimeGAN Explicit modeling of temporal correlations for 
time-series data.

Synthetic ϐinancial data, healthcare time-series 
data. Complexity in implementation and training.

medGAN Combines an autoencoder with a GAN for mixed-
type data (binary, continuous). Synthetic electronic health records (EHR). Originally designed for binary and continuous data, 

extensions are needed for multi-categorical data.

CTAB-GAN Conditional GAN with a classiϐier to learn data 
semantics for tabular data.

Synthetic tabular data generation, handling mixed 
data types. Evaluation metrics for tabular data can be inconsistent [12]

table-GAN Adds a classiϐier network to enhance the 
semantic integrity of synthetic tables.

Synthetic tabular data generation, privacy 
preservation.

Performance can vary across different datasets and may not 
always capture all statistical nuances [13]
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compared to GANs [40]. Traditional statistical methods, 
which model data properties like means and correlations, 
are computationally lighter and suitable for simpler tasks but 
struggle to capture complex, high-dimensional patterns [41]. 
These methods often require more manual domain expertise, 
unlike the automated learning of GANs. While GANs strike a 
strong balance of realism and ϐidelity for complex data such 
as images and time-series, the choice of technique depends on 
application requirements, data type, and trade-offs in training 
stability, computational cost, and data realism [40,42].

Conclusion
As a breakthrough in synthetic data generation, GANs 

generate highly realistic datasets, driving advancements in 
healthcare, ϐinance, computer vision, and natural language 
processing. Their adversarial training process enables them 
to tackle data scarcity, mitigate privacy risks, and reduce 
algorithmic bias, advancing AI applications. However, 
challenges such as training instability, the absence of robust 
evaluation metrics, and ethical concerns remain. Ongoing 
research focuses on developing advanced GAN architectures, 
reϐining training techniques, and establishing standardized 
evaluation methods to address these issues. As these efforts 
advance, GANs promise to improve data sharing, model 
development, and the creation of fair, privacy-preserving, and 
robust deep learning solutions, with future improvements 
targeting stability, efϐiciency, controllability, and ethical 
deployment.
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