Multi-objective Particle Swarm Optimization: A Survey of the State-of-the-art
Main Article Content
Abstract
In the last decade, multi-objective Particle Swarm Optimization (MOPSO) has been observed as one of the most powerful optimization algorithms in solving Multi-objective Optimization Problems (MOPs). Nowadays, it is becoming increasingly clear that MOPSO can handle complex MOPs based on the competitive-cooperative framework. The goal of this paper is to provide a comprehensive review of MOPSO from the basic principles to hybrid evolutionary strategies. To offer the readers insights on the prominent developments of MOPSO, the key parameters on the convergence and diversity performance of MOPSO were analyzed to reflect the influence on the searching performance of particles. Then, the main advanced MOPSO methods were discussed, as well as the theoretical analysis of multi-objective optimization performance metrics. Even though some hybrid MOPSO methods show promising multi-objective optimization performance, there is much room left for researchers to improve further, in particular in terms of engineering applications. As a result, further in-depth studies are required. This paper should motivate evolutionary computation researchers to pay more attention to this practical yet challenging area.
Article Details
Copyright (c) 2025 Li Z, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
1. Li H, Landa-Silva D. An adaptive evolutionary multi-objective approach based on simulated annealing. Evol Comput. 2011;19(4):561–595. Available from: https://dl.acm.org/toc/evol/2011/19/4
2. Brockhoff D, Zitzler E. Objective reduction in evolutionary multi-objective optimization: theory and applications. Evol Comput. 2009;17(2):135–166. Available from: https://ph02.tci-thaijo.org/index.php/sej/article/view/123003
3. Hu WW, Tan Y. Prototype generation using multi-objective particle swarm optimization for nearest neighbor classification. IEEE Trans Cybern. 2016;46(12):2719–2731. Available from: https://doi.org/10.1109/TCYB.2015.2487318
4. Zhang Y, Gong DW, Cheng J. Multi-objective particle swarm optimization approach for cost-based feature selection in classification. IEEE ACM Trans Comput Biol Bioinform. 2017;14(1):64–75.
5. Zhang X, Tian Y, Cheng R. An efficient approach to nondominated sorting for evolutionary multi-objective optimization. IEEE Trans Evol Comput. 2015;19(2):201–213. Available from: http://dx.doi.org/10.1109/TEVC.2014.2308305
6. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182–197. Available from: https://research.birmingham.ac.uk/en/publications/a-fast-and-elitist-multi-objective-genetic-algorithm-nsga-ii
7. Mathijssen G, Lefeber D, Vanderborght B. Variable recruitment of parallel elastic elements: series–parallel elastic actuators (SPEA) with dephased mutilated gears. IEEE ASME Trans Mechatron. 2015;20(2):594–602. Available from: https://researchportal.vub.be/en/publications/variable-recruitment-of-parallel-elastic-elements-series-parallel
8. Helwig S, Branke J, Mostaghim S. Experimental analysis of bound handling techniques in particle swarm optimization. IEEE Trans Evol Comput. 2013;17(2): Available from: http://dx.doi.org/10.1109/TEVC.2012.2189404
9. Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm. Comput Eng Netw Lab (TIK), Zurich, Switzerland. 2001;(103):259–271. Available from: https://sop.tik.ee.ethz.ch/publicationListFiles/zlt2001a.pdf
10. Ali H, Khan FA. Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks. Appl Soft Comput. 2013;13(9):3903–3921.
11. Mathijssen G, Lefeber D, Vanderborght B. Variable recruitment of parallel elastic elements: Series–parallel elastic actuators (SPEA) with dephased mutilated gears. IEEE ASME Trans Mechatron. 2015;20(2):594–602.
12. Helwig S, Branke J, Mostaghim S. Experimental analysis of bound handling techniques in particle swarm optimization. IEEE Trans Evol Comput. 2013;17(2):259–271. Available from: https://ieeexplore.ieee.org/document/6163405
13. Pehlivanoglu YV. A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks. IEEE Trans Evol Comput. 2013;17(3):436–452. Available from: https://ieeexplore.ieee.org/document/6210488
14. He X, Zhou Y, Chen Z. An evolution path-based reproduction operator for many-objective optimization. IEEE Trans Evol Comput. 2017. Available from: https://ieeexplore.ieee.org/document/8226783
15. Han H, Lu W, Zhang L, Qiao J. Adaptive gradient multi-objective particle swarm optimization. IEEE Trans Cybern. 2017. Available from: https://ieeexplore.ieee.org/document/8063385
16. Feng L, Mao Z, Yuan P, et al. Multi-objective particle swarm optimization with preference information and its application in electric arc furnace steelmaking process. Struct Multidiscip Optim. 2015;52(5):1013–1022. Available from: https://link.springer.com/article/10.1007/s00158-015-1276-2
17. Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence: From Natural to Artificial Systems. New York (NY): Oxford University Press; 1999. Available from: https://academic.oup.com/book/40811
18. Li K, Deb K, Zhang Q, Kwong S. An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans Evol Comput. 2015;19(5):694–716. Available from: https://ieeexplore.ieee.org/document/6964796
19. Mukhopadhyay A, Maulik U, Bandyopadhyay S, Coello CAC. A survey of multi-objective evolutionary algorithms for data mining: Part I. IEEE Trans Evol Comput. 2014;18(1):4–19. Available from: https://ieeexplore.ieee.org/document/6658835
20. Coello CAC, Pulido GT, Lechuga MS. Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput. 2004;8(3):256–279. Available from: https://ieeexplore.ieee.org/document/1304847
21. Ganguly S, Sahoo NC, Das D. Multi-objective particle swarm optimization based on fuzzy-Pareto-dominance for possibilistic planning of electrical distribution systems incorporating distributed generation. Fuzzy Sets Syst. 2013;213:47–73. Available from: https://doi.org/10.1016/j.fss.2012.07.005
22. Chang WD, Chen CY. PID controller design for MIMO processes using improved particle swarm optimization. Circ Syst Signal Process. 2014;33(5):1473–1490. Available from: https://link.springer.com/article/10.1007/s00034-013-9710-4
23. Mahmoodabadi MJ, Taherkhorsandi M, Bagheri A. Optimal robust sliding mode tracking control of a biped robot based on ingenious multi-objective PSO. Neurocomputing. 2014;124:194–209. Available from: https://doi.org/10.1016/j.neucom.2013.07.009
24. Chen GG, Liu L, Song P, Du Y. Chaotic improved PSO based multi-objective optimization for minimization of power losses and L index in power systems. Energy Convers Manag. 2014;86:548–560. Available from: https://doi.org/10.1016/j.enconman.2014.06.003
25. Liu J, Luo XG, Zhang XMF. Job scheduling algorithm for cloud computing based on particle swarm optimization. Adv Mater Res. 2013;662:957–960. Available from: https://www.scientific.net/AMR.662.957
26. Chou CJ, Lee CY, Chen CC. Survey of reservoir grounding system defects considering the performance of lightning protection and improved design based on soil drilling data and the particle swarm optimization technique. IEEE Trans Electr Electron Eng. 2014;9(6):605–613. Available from: https://doi.org/10.1002/tee.22016
27. Xu YJ, You T. Minimizing thermal residual stresses in ceramic matrix composites by using iterative Map Reduce guided particle swarm optimization algorithm. Compos Struct. 2013;99:388–396. Available from: https://doi.org/10.1016/j.compstruct.2012.11.027
28. Clerc M, Kennedy J. The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput. 2002;6(1):58–73. Available from: https://ieeexplore.ieee.org/document/985692
29. Reyes-Sierra M, Coello CAC. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int J Comput Intell Res. 2006;2(3):287–308. Available from: https://www.researchgate.net/publication/216301306
30. Peng G, Fang YW, Peng WS, Chai D, Xu Y, et al. Multi-objective particle optimization algorithm based on sharing–learning and dynamic crowding distance. Optik. 2016;127(12):5013–5020. Available from: http://dx.doi.org/10.1109/ChiCC.2016.7554815
31. Ayachitra A, Vinodha R. Comparative study and implementation of multi-objective PSO algorithm using different inertia weight techniques for optimal control of a CSTR process. ARPN J Eng Appl Sci. 2015;10(22):10395–10404.
32. Jordehi AR. Particle swarm optimisation (PSO) for allocation of FACTS devices in electric transmission systems: A review. Renew Sustain Energy Rev. 2015;52:1260–1267. Available from: https://doi.org/10.1016/j.rser.2015.08.007
33. Hu W, Yen GG. Adaptive multi-objective particle swarm optimization based on parallel cell coordinate system. IEEE Trans Evol Comput. 2015;19(1):1–18. Available from: https://ieeexplore.ieee.org/document/6692894
34. Leong WF, Yen GG. PSO-based multi-objective optimization with dynamic population size and adaptive local archives. IEEE Trans Syst Man Cybern B Cybern. 2008;38(5):1270–1293. Available from: https://ieeexplore.ieee.org/document/4581390
35. Meza J, Espitia H, Montenegro C, Giménez E, González-Crespo R. MOVPSO: Vortex multi-objective particle swarm optimization. Appl Soft Comput. 2017;52:1042–1057. Available from: https://doi.org/10.1016/j.asoc.2016.09.026
36. Raquel CR, Nava PC. An effective use of crowding distance in multi-objective particle swarm optimization. In: Proc. Genetic Evol Comput. 2005:257–264. Available from: https://www.researchgate.net/publication/220741476
37. Al Moubayed N, Petrovski A, McCall J. D2MOPSO: MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution spaces. Evol Comput. 2014;22(1):47–77. Available from: https://ieeexplore.ieee.org/document/6818671
38. Agrawal S, Panigrahi BK, Tiwari MK. Multi-objective particle swarm algorithm with fuzzy clustering for electrical power dispatch. IEEE Trans Evol Comput. 2008;12(5):529–541. Available from: https://ieeexplore.ieee.org/document/4454712
39. Andervazh MR, Olamaei J, Haghifam MR. Adaptive multi-objective distribution network reconfiguration using multi-objective discrete particle swarm optimisation algorithm and graph theory. IET Gener Transm Distrib. 2013;7(12):1367–1382. Available from: https://doi.org/10.1049/iet-gtd.2012.0712
40. Daneshyari M, Yen GG. Cultural-based multi-objective particle swarm optimization. IEEE Trans Syst Man Cybern B Cybern. 2011;41(2):553–567. Available from: https://ieeexplore.ieee.org/document/5567177
41. Ali H, Khan FA. Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks. Appl Soft Comput. 2013;13(9):3903–3921. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1568494613001397
42. Lee KB, Kim JH. Multi-objective particle swarm optimization with preference-based sort and its application to path following footstep optimization for humanoid robots. IEEE Trans Evol Comput. 2013;17(6):755–766. Available from: https://ieeexplore.ieee.org/document/6414622
43. Zheng YJ, Ling HF, Xue JY, Chen SY. Population classification in fire evacuation: A multi-objective particle swarm optimization approach. IEEE Trans Evol Comput. 2014;18(1). Available from: https://ieeexplore.ieee.org/document/6595531
44. Torabi SA, Sahebjamnia N, Mansouri SA, Bajestani MA. A particle swarm optimization for a fuzzy multi-objective unrelated parallel machines scheduling problem. Appl Soft Comput. 2013;13(12):4750–4762. Available from: https://doi.org/10.1016/j.asoc.2013.07.029
45. Zhang R, Chang PC, Song S, Wu C. Local search enhanced multi-objective PSO algorithm for scheduling textile production processes with environmental considerations. Appl Soft Comput. 2017;61:447–467. Available from: https://doi.org/10.1016/j.asoc.2017.08.013
46. Shim VA, Tan KC, Chia JY. Multi-objective optimization with estimation of distribution algorithm in a noisy environment. Evol Comput. 2013;21(1):149–177. Available from: https://doi.org/10.1162/evco_a_00066
47. Yue C, Qu B, Liang J. A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems. IEEE Trans Evol Comput. 2017. Available from: https://ieeexplore.ieee.org/document/8046023
48. Huang VL, Suganthan PN, Liang JJ. Comprehensive learning particle swarm optimizer for solving multi-objective optimization problems. Int J Intell Syst. 2006;21(2):209–226. Available from: http://dx.doi.org/10.1002/int.20128
49. Tsai SJ, Sun TY, Liu CC, Hsieh ST, Wu WC, Chiu SY. An improved multi-objective particle swarm optimizer for multi-objective problems. Expert Syst Appl. 2010;37(8):5872–5886. Available from: https://doi.org/10.1016/j.eswa.2010.02.018
50. Cheng S, Zhan H, Shu Z. An innovative hybrid multi-objective particle swarm optimization with or without constraints handling. Appl Soft Comput. 2016;47:370–388. Available from: https://doi.org/10.1016/j.asoc.2016.06.012
51. Ali H, Khan FA. Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks. Appl Soft Comput. 2013;13(9):3903–3921. Available from: https://doi.org/10.1016/j.asoc.2013.04.015
52. Tang B, Zhu Z, Shin HS, Tsourdos A, Luo J. A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm. Inf Sci. 2017;420:364–385. Available from: https://doi.org/10.1016/j.ins.2017.08.076
53. Zhu Q, Lin Q, Chen W, Wong KC, Coello CA, Li J. An external archive-guided multi-objective particle swarm optimization algorithm. IEEE Trans Cybern. 2017;47(9):2794–2808. Available from: https://ieeexplore.ieee.org/document/7946155
54. Wang Y, Yang Y. Particle swarm optimization with preference order ranking for multi-objective optimization. Inf Sci. 2009;179(12):1944–1959. Available from: https://doi.org/10.1016/j.ins.2009.01.005
55. Alvarez-Benítez JE, Everson RM, Fieldsend JE. A MOPSO algorithm based exclusively on Pareto dominance concepts. In: Evol Multi-Criterion Optimiz. 2005:459–473. Available from: https://link.springer.com/chapter/10.1007/978-3-540-31880-4_32
56. Wang Y, Yang Y. Particle swarm with equilibrium strategy of selection for multi-objective optimization. Eur J Oper Res. 2010;200(1):187–197. Available from: https://doi.org/10.1016/j.ejor.2008.12.026
57. Yen GG, Leong WF. Dynamic multiple swarms in multi-objective particle swarm optimization. IEEE Trans Syst Man Cybern A Syst Hum. 2009;39(4):890–911. Available from: https://ieeexplore.ieee.org/document/4783028
58. Goh CK, Tan KC, Liu DS, Chiam SC. A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. Eur J Oper Res. 2010;202(1):42–54. Available from: https://doi.org/10.1016/j.ejor.2009.05.005
59. Cheng S, Zhao L, Jiang X. An effective application of bacteria quorum sensing and circular elimination in MOPSO. IEEE/ACM Trans Comput Biol Bioinform. 2017;14(1):56. Available from: https://ieeexplore.ieee.org/document/7128359
60. De Carvalho AB, Pozo A. Measuring the convergence and diversity of CDAS multi-objective particle swarm optimization algorithms: a study of many-objective problems. Neurocomputing. 2012;75(1):43-51. Available from: https://doi.org/10.1016/j.neucom.2011.03.053
61. Wang H, Fu Y, Huang M, Wang J. A hybrid evolutionary algorithm with adaptive multi-population strategy for multi-objective optimization problems. Soft Comput. 2016:1-13. Available from: https://link.springer.com/article/10.1007/s00500-016-2414-5
62. Britto A, Pozo A. Using reference points to update the archive of MOPSO algorithms in many-objective optimization. Neurocomputing. 2014;127:78-87. Available from: https://doi.org/10.1016/j.neucom.2013.05.049
63. Zhang X, Zheng X, Cheng R, Qiu J, Jin Y. A competitive mechanism-based multi-objective particle swarm optimizer with fast convergence. Inf Sci. 2018;427:63-76. Available from: https://doi.org/10.1016/j.ins.2017.10.037
64. Lin Q, Li J, Du Z, Chen J, Ming Z. A novel multi-objective particle swarm optimization with multiple search strategies. Eur J Oper Res. 2015;247(3):732-744. Available from: https://doi.org/10.1016/j.ejor.2015.06.071
65. Fang W, Sun J, Xie Z, Xu W. Convergence analysis of quantum-behaved particle swarm optimization algorithm and study on its control parameter. Acta Phys Sin. 2010;59(6):3686-3694. Available from: https://doi.org/10.7498/aps.59.3686
66. Tian DP. A review of convergence analysis of particle swarm optimization. Int J Grid Distrib Comput. 2013;6(6):117-128. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ed4cdddfc04dfe9eb101af85faa1dcc251790b8b
67. Sun J, Wu X, Palade V, Fang W, Lai CH, Xu W. Convergence analysis and improvements of quantum-behaved particle swarm optimization. Inf Sci. 2012;193(15):81-103. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=71a72d2155a2443279f73a9dd71732762b2e400e
68. Kadirkamanathan V, Selvarajah K, Fleming PJ. Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans Evol Comput. 2006;10(3):245-255. Available from: https://doi.org/10.1109/TEVC.2005.857077
69. Van den Bergh F, Engelbrecht AP. A study of particle swarm optimization particle trajectories. Inf Sci. 2006;176(8):937-971. Available from: https://doi.org/10.1016/j.ins.2005.02.003
70. Xu G, Yu G. Reprint of: On convergence analysis of particle swarm optimization algorithm. J Comput Appl Math. 2018;340:709–17. Available from: https://doi.org/10.1016/j.cam.2018.04.036
71. Chakraborty P, Das S, Roy GG, Abraham A. On convergence of the multi-objective particle swarm optimizers. Inf Sci. 2011;181(8):1411–25. Available from: https://doi.org/10.1016/j.ins.2010.11.036
72. Li L, Wang W, Xu X. Multi-objective Particle Swarm Optimization based on Global Margin Ranking. Inf Sci. 2016;375:30–47. Available from: https://doi.org/10.1016/j.ins.2016.08.043
73. Han H, Lu W, Zhang L, Qiao J. Adaptive Gradient Multiobjective Particle Swarm Optimization. IEEE Trans Cybern. 2018;48(11):3067–79. Available from: https://doi.org/10.1109/tcyb.2017.2756874
74. Chen CH, Chen YP. Convergence Time Analysis of Particle Swarm Optimization Based on Particle Interaction. Adv Artif Intell. 2011;2011(1):1–7. Available from: https://doi.org/10.1155/2011/204750
75. Jiang M, Huang Z, Qiu L, Huang WZ, Yen GG. Transfer Learning based Dynamic Multi-objective Optimization Algorithms. IEEE Trans Evol Comput. 2018;22:501–4. Available from: https://doi.org/10.1109/TEVC.2017.2771451
76. Cao B, Zhao J, Lv Z, Liu X, Yang S, Kang X, et al. Distributed Parallel Particle Swarm Optimization for Multi-Objective and Many-Objective Large-Scale Optimization. IEEE Access. 2017;5(99):8214–21. Available from: https://doi.org/10.1109/ACCESS.2017.2702561
77. Yang Y, Zhang T, Yi W, Yi W, Kong L, Li X, et al. Deployment of multistatic radar system using multi-objective particle swarm optimization. IET Radar Sonar Navig. 2018;12(5):485–93. Available from: https://doi.org/10.1049/iet-rsn.2017.0351
78. Fernández-Rodríguez A, Fernández-Cardador A, Cucala AP, Domínguez M. Design of Robust and Energy-Efficient ATO Speed Profiles of Metropolitan Lines Considering Train Load Variations and Delays. IEEE Trans Intell Transp Syst. 2015;16(4):2061–71. Available from: https://doi.org/10.1109/TITS.2015.2391831
79. Wen S, Lan H, Fu Q, Zhang L. Economic Allocation for Energy Storage System Considering Wind Power Distribution. IEEE Trans Power Syst. 2015;30(2):644–52. Available from: https://doi.org/10.1109/TPWRS.2014.2337936
80. Shahsavari A, Mazhari SM, Fereidunian A. Fault Indicator Deployment in Distribution Systems Considering Available Control and Protection Devices: A Multi-Objective Formulation Approach. IEEE Trans Power Syst. 2014;29(5):2359–69. Available from: https://doi.org/10.1109/TPWRS.2014.2303933
81. Srivastava L, Singh H. Hybrid multi-swarm particle swarm optimisation based multi-objective reactive power dispatch. IET Gener Transm Distrib. 2015;9(8):727–39. Available from: https://doi.org/10.1049/iet-gtd.2014.0469
82. Niknam T, Narimani MR, Aghaei J. Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index. IET Gener Transm Distrib. 2012;6(6):515–27. Available from: https://doi.org/10.1049/iet-gtd.2011.0851
83. Chamaani S, Mirtaheri SA, Abrishamian MS. Improvement of Time and Frequency Domain Performance of Antipodal Vivaldi Antenna Using Multi-Objective Particle Swarm Optimization. IEEE Trans Antennas Propag. 2011;59(5):1738–42. Available from: https://doi.org/10.1109/TAP.2011.2122290
84. Karimi E, Ebrahimi A. Inclusion of Blackouts Risk in Probabilistic Transmission Expansion Planning by a Multi-Objective Framework. IEEE Trans Power Syst. 2015;30(5):2810–7. Available from: https://doi.org/10.1109/TPWRS.2014.2370065
85. Ho SL, Yang J, Yang S, Bai Y. Integration of Directed Searches in Particle Swarm Optimization for Multi-Objective Optimization. IEEE Trans Magn. 2015;51(3):1–4. Available from: http://dx.doi.org/10.1109/TMAG.2014.2361323
86. Pham MT, Zhang D, Chang SK. Multi-Guider and Cross-Searching Approach in Multi-Objective Particle Swarm Optimization for Electromagnetic Problems. IEEE Trans Magn. 2012;48(2):539–42. Available from: https://doi.org/10.1109/TMAG.2011.2173559
87. Ye X, Chen H, Liang H, Xinjun C, Jiaxin Y. Multi-Objective Optimization Design for Electromagnetic Devices With Permanent Magnet Based on Approximation Model and Distributed Cooperative Particle Swarm Optimization Algorithm. IEEE Trans Magn. 2017;PP(99):1–5. Available from: https://doi.org/10.1109/TMAG.2017.2758818
88. Ganguly S. Multi-Objective Planning for Reactive Power Compensation of Radial Distribution Networks With Unified Power Quality Conditioner Allocation Using Particle Swarm Optimization. IEEE Trans Power Syst. 2014;29(4):1801–10. Available from: https://doi.org/10.1109/TPWRS.2013.2296938
89. Shukla A, Singh SN. Multi-objective unit commitment using search space-based crazy particle swarm optimisation and normal boundary intersection technique. IET Gener Transm Distrib. 2016;10(5):1222–31. Available from: https://doi.org/10.1049/iet-gtd.2015.0806
90. Goudos SK, Zaharis ZD, Kampitaki DG, Rekanos IT, Hilas CS. Pareto Optimal Design of Dual-Band Base Station Antenna Arrays Using Multi-Objective Particle Swarm Optimization With Fitness Sharing. IEEE Trans Magn. 2009;45(3):1522–5. Available from: https://doi.org/10.1109/TMAG.2009.2012695
91. Xue B, Zhang M, Browne WN. Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans Cybern. 2013;43(6):1656–71. Available from: https://doi.org/10.1109/TSMCB.2012.2227469